Понятия со словом «логик»
Форма́льная ло́гика — наука о правилах преобразования высказываний, сохраняющих их истинностное значение безотносительно к содержанию входящих в эти высказывания понятий, а также конструирование этих правил. Будучи основателем формальной логики как науки, Аристотель называл её «аналитика», термин же «логика» прочно вошёл в обиход уже после его смерти в III веке до нашей эры.
История логики изучает развитие науки о формах и законах правильного мышления (логика).
Многозна́чная ло́гика — тип формальной логики, в которой допускается более двух истинностных значений для высказываний. Первую систему многозначной логики предложил польский философ Ян Лукасевич в 1920 году. В настоящее время существует очень много других систем многозначной логики, которые в свою очередь могут быть сгруппированы по классам. Важнейшими из таких классов являются частичные логики и нечёткие логики.
Модальная логика (от лат. modus — способ, мера) — логика, в которой кроме стандартных логических связок, переменных и/или предикатов есть модальности (модальные операторы).
Классическая логика — термин, используемый в математической логике по отношению к той или иной логической системе, для указания того, что для данной логики справедливы все законы (классического) исчисления высказываний, в том числе закон исключения третьего.
Вероятностная логика — логика, в которой высказываниям приписываются не исключительно значения истины и лжи как в двузначной логике, а непрерывная шкала значений истинности от 0 до 1, так, что ноль соответствует невозможному событию, единица — практически достоверному. Значения истинности в вероятностной логике называются вероятностями истинности высказываний, степенями правдоподобия или подтверждения.
Логика высказываний, или пропозициональная логика (лат. propositio — «высказывание»), или исчисление высказываний — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
Темпоральная логика (англ. temporal (от лат. tempus) logic) — это логика, в высказываниях которой учитывается временной аспект. Используется для описания последовательностей явлений и их взаимосвязи по временной шкале.
Логика научного исследования (нем. Logik der Forschung) — эпистемологический трактат англо-австрийского философа еврейского происхождения Карла Поппера, написанный в 1934. Основная проблема — проблема демаркации науки от вненаучных форм знания. Поппер вводит принцип фальсификации научного знания, интерсубъективного характера истины и внерациональности научных постулатов.
Математи́ческая ло́гика (теоретическая логика, символическая логика) — раздел математики, изучающий математические обозначения, формальные системы, доказуемость математических суждений, природу математического доказательства в целом, вычислимость и прочие аспекты оснований математики. В более широком смысле рассматривается как математизированная ветвь формальной логики — «логика по предмету, математика по методу», «логика, развиваемая с помощью математических методов».
Логика второго порядка в математической логике — формальная система, расширяющая логику первого порядка возможностью квантификации общности и существования не только над переменными, но и над предикатами. Логика второго порядка несводима к логике первого порядка. В свою очередь, она расширяется логикой высших порядков и теорией типов.
Ло́гика (др.-греч. λογική — «наука о правильном мышлении», «способность к рассуждению» от др.-греч. λόγος — «логос», «рассуждение», «мысль», «разум», «смысл») — раздел философии, нормативная наука о формах, методах и законах интеллектуальной познавательной деятельности, формализуемых на логическом языке. Поскольку это знание получено разумом, логика также определяется как наука о формах и законах мышления. Так как мышление оформляется в языке в виде рассуждения, частными случаями которого являются...
Диалектическая логика — философский раздел марксизма, систематически развёрнутое изложение мышления («диалектики как логики»). Тем самым диалектическая логика является теорией познания. Также диалектическая логика понимается как логическая дисциплина о формах правильных рассуждений.
Логика первого порядка, называемая иногда логикой или исчислением предикатов — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высших порядков.
Комбина́торная ло́гика — направление математической логики, занимающееся фундаментальными (то есть не нуждающимися в объяснении и не анализируемыми) понятиями и методами формальных логических систем или исчислений. В дискретной математике комбинаторная логика тесно связана с лямбда-исчислением, так как описывает вычислительные процессы.
Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
Связанные понятия
Метало́гика — изучение метатеории логики. В то время, как логика представляет собой исследование способов применения логических систем для рассуждения, доказательств и опровержений, металогика исследует свойства самих логических систем.
Интуициони́зм — совокупность философских и математических взглядов, рассматривающих математические суждения с позиций «интуитивной убедительности». Различаются две трактовки интуиционизма: интуитивная убедительность, которая не связана с вопросом существования объектов, и наглядная умственная убедительность.
Метаматематика — раздел математической логики, изучающий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов. Термин «метаматематика» буквально означает «за пределами математики».
Теория доказательств — это раздел математической логики, представляющий доказательства в виде формальных математических объектов, осуществляя их анализ с помощью математических методов. Доказательства обычно представляются в виде индуктивно определённых структур данных, таких как списки и деревья, созданных в соответствии с аксиомами и правилами вывода формальных систем. Таким образом, теория доказательств является синтаксической, в отличие от семантической теории моделей. Вместе с теорией моделей...
Логици́зм — одно из основных направлений обоснования математики и философии математики, ставящее целью сведе́ние исходных математических понятий к понятиям логики. Двумя другими основными направлениями являются интуиционизм и формализм.
Тео́рия дескри́пций (англ. Theory of descriptions) — теория описаний английского математика и философа Бертрана Рассела, известная также как Теория дескрипций Рассела (англ. Russell's Theory of Descriptions (RTD)). Впервые была опубликована в британском академическом журнале Mind за 1905 год и стала самым существенным вкладом Рассела в развитие философии языка.
Отображение онтологий (англ. ontology alignment или ontology matching) — это процесс установления соответствий между понятиями (концептами) нескольких онтологий. Множество таких соответствий и называется «отображением». Термин имеет разное значение в компьютерной, когнитивной областях и философии.
Теория всего в философии — термин для обозначения всеобъемлющей философской концепции, описывающей природу или бытие всего сущего. Термин «теория всего» позаимствован из физики, в которой на протяжении длительного времени ведутся попытки построения теории, описывающей все известные фундаментальные взаимодействия. Философская теория всего, по мнению ряда философов, должна отвечать на такие вопросы, как «Почему постижима реальность?», «Почему законы природы именно таковы?», «Почему что-либо вообще...
Филосо́фия матема́тики — раздел философии науки, исследующий философские основания и проблемы математики: онтологические, гносеологические, методологические, логические и аксиологические предпосылки и принципы математики в целом, её различных направлений, дисциплин и теорий. В широком смысле философия математики занимается построением семантической теории «языка» математики для изучения смысла математических высказываний и сущности абстрактных объектов.
Деду́кция (лат. deductio — выведение, также дедуктивное умозаключение, силлогизм) — метод мышления, следствием которого является логический вывод, в котором частное заключение выводится из общего. Цепь умозаключений (рассуждений), где звенья (высказывания) связаны между собой логическими выводами.
Подробнее: Дедуктивное умозаключение
Логическая семантика — «Философский термин» — («рассуждение», «мысль», «разум») — раздел логики, в котором изучаются отношения языковых символов к обозначаемым ими объектам и выражаемому ими содержанию.
Формализм — один из подходов к философии математики, пытающийся свести проблему оснований математики к изучению формальных систем. Наряду с логицизмом и интуиционизмом считался в XX веке одним из направлений фундаментализма в философии математики.
Форма́льная систе́ма (форма́льная тео́рия, аксиоматическая теория, аксиоматика, дедуктивная система) — результат строгой формализации теории, предполагающей полную абстракцию от смысла слов используемого языка, причем все условия, регулирующие употребление этих слов в теории, явно высказаны посредством аксиом и правил, позволяющих вывести одну фразу из других.
Эври́стика (от др.-греч. εὑρίσκω — «отыскиваю», «открываю») — отрасль знания, научная область, изучающая специфику творческой деятельности.
Философия обыденного языка (англ. ordinary language philosophy), философия лингвистического анализа — одна из школ лингвистической философии, рассматривающая традиционные философские проблемы как основанные на ошибочном понимании философами того, что в действительности означают обычные слова, искажении смысла обычных слов.
«Логические исследования» (нем. Logische Untersuchungen, 1900, 1901) — философское сочинение Э. Гуссерля. Хотя в «Логических исследованиях» ещё не развёрнуты все характерные для феноменологии темы, это — исходная для феноменологического движения работа, о которой сам Гуссерль сказал позднее, что она стала для него «произведением прорыва».
Теория действия — область философского исследования, предметом которой являются действия, прежде всего действия человека. В центре современных дискуссий вопросы природы действий, их адекватного описания и объяснения.
Основания математики — математическая система, разработанная с целью обеспечить вывод математического знания из небольшого числа чётко сформулированных аксиом с помощью логических правил вывода, тем самым гарантируя надёжность математических истин. Основания математики включают в себя три компонента.
Конструктивная математика — абстрактная наука о конструктивных процессах, человеческой способности осуществлять их, и об их результатах — конструктивных объектах.
Логи́ческий позитиви́зм (англ. Logical positivism; также логический эмпиризм и неопозитивизм) — является школой философии, которая включает в себя эмпиризм, идею о том, что для познания мира необходимы наблюдаемые доказательства, опирающиеся на рационализм, основанный на математических и логико-лингвистических конструкциях в эпистемологии. Логический позитивизм утверждает, что мир познаваем, надо только избавиться от ненаблюдаемого.
Формализа́ция — представление какой-либо содержательной области (рассуждений, доказательств, процедур классификации, поиска информации, научных теорий) в виде формальной системы или исчисления.
Инду́кция (лат. inductio — наведение, от лат. inducere — влечь за собой, установить) — процесс логического вывода на основе перехода от частного положения к общему. Индуктивное умозаключение связывает частные предпосылки с заключением не строго через законы логики, а скорее через некоторые фактические, психологические или математические представления.Объективным основанием индуктивного умозаключения является всеобщая связь явлений в природе.
Подробнее: Индуктивное умозаключение
Вывод (лат. conclusio) в логике — процесс рассуждения, в ходе которого осуществляется переход от некоторых исходных суждений (предпосылок) к новым суждениям — заключениям. Вывод может проводиться в несколько этапов—умозаключений.
Абстра́ктный объе́кт — объект, созданный какой-либо абстракцией или при посредстве какой-либо абстракции; когнитивно представленный объект познания, репрезентирующий те или иные сущностные аспекты, свойства, отношения вещей и явлений окружающего мира. Абстрактные объекты делятся на реальные и идеальные, различающиеся постановкой и решением проблемы существования. Для реальных имеется её конструктивное решение; идеальные же выходят за пределы эффективной проверки (например, континуум). В философии...
Простой
категорический силлоги́зм (др.-греч. συλ-λογισμός «подытоживание, подсчёт, умозаключение» от συλ- (συν-) «вместе» + λογισμός «счёт, подсчёт; рассуждение, размышление») — дедуктивное умозаключение, состоящее из трёх простых атрибутивных высказываний: двух посылок и одного заключения. Посылки силлогизма разделяются на бо́льшую (которая содержит предикат заключения) и меньшую (которая содержит субъект заключения). По положению среднего термина силлогизмы делятся на фигуры, а последние по логической...
Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами.
Модальный реализм (англ. Modal realism) — гипотеза, предложенная Дэвидом Льюисом, что все возможные миры такие же реальные, как реальный мир.
Эпистемоло́гия (от др.-греч. ἐπιστήμη «научное знание, наука», «достоверное знание» + λόγος «слово», «речь») — философско-методологическая дисциплина, исследующая знание как таковое, его строение, структуру, функционирование и развитие. Нередко (особенно в английском языке) слово выступает как синоним гносеологии.
Выска́зывание в математической логике — предложение, выражающее суждение. Если суждение, составляющее содержание (смысл) некоторого высказывания, истинно, то и о данном высказывании говорят, что оно истинно. Сходным образом ложным называют такое высказывание, которое является выражением ложного суждения. Истинность и ложность называются логическими, или истинностными, значениями высказываний.Высказывание должно быть повествовательным предложением, и противопоставляются повелительным, вопросительным...
Постпозитиви́зм (англ. Postpositivism) — общее название для нескольких школ философии науки, объединённых критическим отношением к эпистемологическим учениям, которые были развиты в рамках неопозитивизма и обосновывали получение объективного знания из опыта. Основные представители: Карл Поппер, Томас Кун, Имре Лакатос, Пол Фейерабенд, Майкл Полани, Стивен Тулмин. К постпозитивизму близки работы школы неорационализма, в особенности Г. Башляра и М. Фуко.
Конвенционали́зм (от лат. conventio — договор, соглашение) — философская концепция, согласно которой научные понятия и теоретические построения являются в основе своей продуктами соглашения между учёными. Они должны быть внутренне непротиворечивы и соответствовать данным наблюдения, но не имеет смысла требовать от них, чтобы они отражали истинное устройство мира. Следовательно, все непротиворечивые научные (а также философские) теории в равной степени приемлемы и ни одна из них не может быть признана...
История искусственного интеллекта, как учение о развитии современной науки и технологии создания интеллектуальных машин, имеет свои корни в ранних философских исследованиях природы человека и процесса познания мира, расширенных позднее нейрофизиологами и психологами в виде ряда теорий относительно работы человеческого мозга и мышления. Современной стадией развития науки об искусственном интеллекте является развитие фундамента математической теории вычислений — теории алгоритмов — и создание компьютеров...
Критический рационализм (критический эмпиризм, фальсификационизм) — эпистемологическая теория, основные принципы которой сформулированы Карлом Поппером.