Связанные понятия
Классическая логика — термин, используемый в математической логике по отношению к той или иной логической системе, для указания того, что для данной логики справедливы все законы (классического) исчисления высказываний, в том числе закон исключения третьего.
Форма́льная ло́гика — наука о правилах преобразования высказываний, сохраняющих их истинностное значение безотносительно к содержанию входящих в эти высказывания понятий, а также конструирование этих правил. Будучи основателем формальной логики как науки, Аристотель называл её «аналитика», термин же «логика» прочно вошёл в обиход уже после его смерти в III веке до нашей эры.
Выска́зывание в математической логике — предложение, выражающее суждение. Если суждение, составляющее содержание (смысл) некоторого высказывания, истинно, то и о данном высказывании говорят, что оно истинно. Сходным образом ложным называют такое высказывание, которое является выражением ложного суждения. Истинность и ложность называются логическими, или истинностными, значениями высказываний.Высказывание должно быть повествовательным предложением, и противопоставляются повелительным, вопросительным...
Вывод (лат. conclusio) в логике — процесс рассуждения, в ходе которого осуществляется переход от некоторых исходных суждений (предпосылок) к новым суждениям — заключениям. Вывод может проводиться в несколько этапов—умозаключений.
Посылка — это утверждение, предназначенное для обоснования или объяснения некоторого аргумента. В логике аргумент — это множество предложений (или «суждений») одни из которых являются посылками, а другие утвердительные предложения (или суждения) — логическими выводами.
Упоминания в литературе
Получив набор возможных миров для квантификации, формальная
логика модальных высказываний становится богаче. Благодаря квантификации по возможным мирам можно получить интенсиональную семантику, хотя и более сложным путем. Так как значение или интенсионал высказывания – это то, по чему идет отбор возможных миров, в которых это высказывание истинно, то каждое предложение может быть истолковано как функция от возможных миров по истинностным значениям. Точно так же свойство может быть представлено как функция от возможных миров по множествам, элементы которых обнаруживают это свойство в каждом мире. Другие виды обозначающих терминов могут быть концептуально реконструированы похожими способами.
Стремление обогатить язык логики и расширить ее возможности привело к возникновению
модальной логики . Ее задача – анализ рассуждений, в которых встречаются модальные понятия, служащие для конкретизации устанавливаемых нами связей, их оценки с той или иной точки зрения.
Связанные понятия (продолжение)
Интуициони́зм — совокупность философских и математических взглядов, рассматривающих математические суждения с позиций «интуитивной убедительности». Различаются две трактовки интуиционизма: интуитивная убедительность, которая не связана с вопросом существования объектов, и наглядная умственная убедительность.
Логика высказываний , или пропозициональная логика (лат. propositio — «высказывание»), или исчисление высказываний — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
Логика второго порядка в математической логике — формальная система, расширяющая логику первого порядка возможностью квантификации общности и существования не только над переменными, но и над предикатами. Логика второго порядка несводима к логике первого порядка. В свою очередь, она расширяется логикой высших порядков и теорией типов.
Логика первого порядка , называемая иногда логикой или исчислением предикатов — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высших порядков.
Метало́гика — изучение метатеории логики. В то время, как логика представляет собой исследование способов применения логических систем для рассуждения, доказательств и опровержений, металогика исследует свойства самих логических систем.
Метаматематика — раздел математической логики, изучающий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов. Термин «метаматематика» буквально означает «за пределами математики».
Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами.
Сужде́ние — мысль, в которой утверждается наличие или отсутствие каких-либо положений дел.
Вероятностная логика — логика, в которой высказываниям приписываются не исключительно значения истины и лжи как в двузначной логике, а непрерывная шкала значений истинности от 0 до 1, так, что ноль соответствует невозможному событию, единица — практически достоверному. Значения истинности в вероятностной логике называются вероятностями истинности высказываний, степенями правдоподобия или подтверждения.
Логици́зм — одно из основных направлений обоснования математики и философии математики, ставящее целью сведе́ние исходных математических понятий к понятиям логики. Двумя другими основными направлениями являются интуиционизм и формализм.
Деду́кция (лат. deductio — выведение, также дедуктивное умозаключение, силлогизм) — метод мышления, следствием которого является логический вывод, в котором частное заключение выводится из общего. Цепь умозаключений (рассуждений), где звенья (высказывания) связаны между собой логическими выводами.
Подробнее: Дедуктивное умозаключение
Инду́кция (лат. inductio — наведение, от лат. inducere — влечь за собой, установить) — процесс логического вывода на основе перехода от частного положения к общему. Индуктивное умозаключение связывает частные предпосылки с заключением не строго через законы логики, а скорее через некоторые фактические, психологические или математические представления.Объективным основанием индуктивного умозаключения является всеобщая связь явлений в природе.
Подробнее: Индуктивное умозаключение
Форма́льная систе́ма (форма́льная тео́рия, аксиоматическая теория, аксиоматика, дедуктивная система) — результат строгой формализации теории, предполагающей полную абстракцию от смысла слов используемого языка, причем все условия, регулирующие употребление этих слов в теории, явно высказаны посредством аксиом и правил, позволяющих вывести одну фразу из других.
На эту страницу установлено перенаправление со страницы «A posteriori», см. также статью о музыкальном альбоме «A Posteriori».Апостерио́ри, а постерио́ри (лат. a posteriori букв. «из последующего») — знание, полученное из опыта. Противопоставляется априори — доопытному знанию. Значение термина исторически менялось: нынешнее значение установилось благодаря И. Канту и его работе "Критика чистого разума" (впервые опубликована в 1781 году, второе издание в 1787 г.) Однако, в латинской форме, выражения...
Подробнее: Апостериори
Конструктивная математика — абстрактная наука о конструктивных процессах, человеческой способности осуществлять их, и об их результатах — конструктивных объектах.
Саморефере́нция (самоотносимость) — явление, которое возникает в системах высказываний в тех случаях, когда некое понятие ссылается само на себя. Иначе говоря, если какое-либо выражение является одновременно самой функцией и аргументом этой функции.
Теория доказательств — это раздел математической логики, представляющий доказательства в виде формальных математических объектов, осуществляя их анализ с помощью математических методов. Доказательства обычно представляются в виде индуктивно определённых структур данных, таких как списки и деревья, созданных в соответствии с аксиомами и правилами вывода формальных систем. Таким образом, теория доказательств является синтаксической, в отличие от семантической теории моделей. Вместе с теорией моделей...
Формализм — один из подходов к философии математики, пытающийся свести проблему оснований математики к изучению формальных систем. Наряду с логицизмом и интуиционизмом считался в XX веке одним из направлений фундаментализма в философии математики.
Априо́ри (лат. a priori — буквально «от предшествующего») — знание, полученное до опыта и независимо от него (знание априори, априорное знание), то есть знание, как бы заранее известное. Этот философский термин получил важное значение в теории познания и логике благодаря Канту. Идея знания априори связана с представлением о внутреннем источнике активности мышления. Учение, признающее знание априори, называется априоризмом. Противоположностью априори является апостериори (лат. a posteriori — от последующего...
Определе́ние , дефини́ция (лат. definitio — предел, граница) — логическая операция раскрывающая содержание имени посредством описания отличительных признаков предметов или явлений.
Тео́рия дескри́пций (англ. Theory of descriptions) — теория описаний английского математика и философа Бертрана Рассела, известная также как Теория дескрипций Рассела (англ. Russell's Theory of Descriptions (RTD)). Впервые была опубликована в британском академическом журнале Mind за 1905 год и стала самым существенным вкладом Рассела в развитие философии языка.
Доказательство — это процесс (метод) установления истины, логическая операция обоснования истинности утверждения с помощью фактов и связанных с ними суждений. С помощью совокупности логических приёмов истинность какого-либо суждения обосновывается исходя из других истинных суждений.
Многозна́чная ло́гика — тип формальной логики, в которой допускается более двух истинностных значений для высказываний. Первую систему многозначной логики предложил польский философ Ян Лукасевич в 1920 году. В настоящее время существует очень много других систем многозначной логики, которые в свою очередь могут быть сгруппированы по классам. Важнейшими из таких классов являются частичные логики и нечёткие логики.
Физикали́зм — концепция логического позитивизма, которая разрабатывалась Карнапом, Нейратом и др. Сторонники физикализма считают критерием научности какого-либо положения любой науки возможность перевести его на язык физики. Положения, не поддающиеся такой операции, рассматриваются как лишённые научного смысла.
Простой
категорический силлоги́зм (др.-греч. συλ-λογισμός «подытоживание, подсчёт, умозаключение» от συλ- (συν-) «вместе» + λογισμός «счёт, подсчёт; рассуждение, размышление») — дедуктивное умозаключение, состоящее из трёх простых атрибутивных высказываний: двух посылок и одного заключения. Посылки силлогизма разделяются на бо́льшую (которая содержит предикат заключения) и меньшую (которая содержит субъект заключения). По положению среднего термина силлогизмы делятся на фигуры, а последние по логической...
Логическая семантика — «Философский термин» — («рассуждение», «мысль», «разум») — раздел логики, в котором изучаются отношения языковых символов к обозначаемым ими объектам и выражаемому ими содержанию.
Экстенсиона́л (от лат. extentio — протяжение, пространство, распространение) — термин семантики, обозначающий объём понятия, то есть множество объектов, способных именоваться данной языковой единицей (категорией). Например, в экстенсионал (категория) понятия «человек» входят все объекты, обладающие свойством «быть человеком» (Сократ — это человек, философ — это человек, мыслящее существо — это человек и т.п.).
Суперве́нтность (англ. Supervenience) — отношение детерминированности состояния любой системы состоянием другой системы. Набор свойств одной системы супервентен относительно набора свойств другой системы в том случае, если существование различия между двумя фактами в свойствах первой системы невозможно без существования такого же различия между двумя фактами в свойствах второй системы. Понятие супервентности является центральным понятием современной аналитической философии и часто используется в...
Логика научного исследования (нем. Logik der Forschung) — эпистемологический трактат англо-австрийского философа еврейского происхождения Карла Поппера, написанный в 1934. Основная проблема — проблема демаркации науки от вненаучных форм знания. Поппер вводит принцип фальсификации научного знания, интерсубъективного характера истины и внерациональности научных постулатов.
Эври́стика (от др.-греч. εὑρίσκω — «отыскиваю», «открываю») — отрасль знания, научная область, изучающая специфику творческой деятельности.
Зако́н доста́точного основа́ния — принцип, согласно которому каждое осмысленное выражение (понятие, суждение) может считаться достоверным только в том случае, если оно было доказано, то есть были приведены достаточные основания, в силу которых его можно считать истинным.
Противоре́чие (контрадикторность) — отношение двух понятий и суждений, каждое из которых является отрицанием другого. В формальной логике противоречие считается недопустимым согласно закону противоречия. Однако, как показали Кант (антиномии) и Гегель, противоречие есть необходимый этап и результат всякого реального мышления — познания. Если у Канта, и в метафизике вообще, логическое противоречие трактуется как феномен, появляющийся в мышлении в силу его несовершенства или его неправомерного использования...
Темпоральная логика (англ. temporal (от лат. tempus) logic) — это логика, в высказываниях которой учитывается временной аспект. Используется для описания последовательностей явлений и их взаимосвязи по временной шкале.
Комбина́торная ло́гика — направление математической логики, занимающееся фундаментальными (то есть не нуждающимися в объяснении и не анализируемыми) понятиями и методами формальных логических систем или исчислений. В дискретной математике комбинаторная логика тесно связана с лямбда-исчислением, так как описывает вычислительные процессы.
Модальный реализм (англ. Modal realism) — гипотеза, предложенная Дэвидом Льюисом, что все возможные миры такие же реальные, как реальный мир.
Обобще́ние поня́тий — логическая операция, посредством которой в результате исключения видового признака получается другое понятие более широкого объема, но менее конкретного содержания; форма приращения знания путём мысленного перехода от частного к общему в некоторой модели мира, что обычно соответствует и переходу на более высокую ступень абстракции. Результатом логической операции обобщения является гипероним.
Филосо́фия матема́тики — раздел философии науки, исследующий философские основания и проблемы математики: онтологические, гносеологические, методологические, логические и аксиологические предпосылки и принципы математики в целом, её различных направлений, дисциплин и теорий. В широком смысле философия математики занимается построением семантической теории «языка» математики для изучения смысла математических высказываний и сущности абстрактных объектов.
Теория типов — математически формализованная база для проектирования, анализа и изучения систем типов данных в теории языков программирования (раздел информатики). Многие программисты используют это понятие для обозначения любого аналитического труда, изучающего системы типов в языках программирования. В научных кругах под теорией типов чаще всего понимают более узкий раздел дискретной математики, в частности λ-исчисление с типами.
Пресуппози́ция (от лат. prae — впереди, перед и suppositio — подкладывание, заклад) (также презу́мпция) в лингвистической семантике — необходимый семантический компонент, обеспечивающий наличие смысла в утверждении.
Аргуме́нт (до́вод) — логическая посылка, используемая отдельно или в совокупности с другими с целью доказательства истинности определённого утверждения — тезиса. Чтобы тезис можно было считать истинным, все аргументы должны содержать в себе истинную информацию, достаточную для доказательства тезиса с помощью верных логических умозаключений.
Проблема индукции — философская проблема, впервые сформулированная Т. Гоббсом (1588—1679) и развитая в середине XVIII века Дэвидом Юмом.
Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
Силлоги́зм (др.-греч. συλ-λογισμός «подытоживание, подсчёт, умозаключение» от συλ- (συν-) «вместе» + λογισμός «счёт, подсчёт; рассуждение, размышление»)...
Аксио́мы Пеа́но — одна из систем аксиом для натуральных чисел, введённая в XIX веке итальянским математиком Джузеппе Пеано.