Связанные понятия
Теория типов — математически формализованная база для проектирования, анализа и изучения систем типов данных в теории языков программирования (раздел информатики). Многие программисты используют это понятие для обозначения любого аналитического труда, изучающего системы типов в языках программирования. В научных кругах под теорией типов чаще всего понимают более узкий раздел дискретной математики, в частности λ-исчисление с типами.
Метаматематика — раздел математической логики, изучающий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов. Термин «метаматематика» буквально означает «за пределами математики».
Автоматическое доказательство (англ. Automated Theorem Proving, ATP, а также Automated deduction) — доказательство, реализованное программно. В основе лежит аппарат математической логики. Используются идеи теории искусственного интеллекта. Процесс доказательства основывается на логике высказываний и логике предикатов.
Ля́мбда-исчисле́ние (λ-исчисление) — формальная система, разработанная американским математиком Алонзо Чёрчем, для формализации и анализа понятия вычислимости.
Многозна́чная ло́гика — тип формальной логики, в которой допускается более двух истинностных значений для высказываний. Первую систему многозначной логики предложил польский философ Ян Лукасевич в 1920 году. В настоящее время существует очень много других систем многозначной логики, которые в свою очередь могут быть сгруппированы по классам. Важнейшими из таких классов являются частичные логики и нечёткие логики.
Логика первого порядка , называемая иногда логикой или исчислением предикатов — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высших порядков.
Теория языков программирования (англ. programming language theory, PLT) — раздел информатики, посвящённый вопросам проектирования, анализа, определения характеристик и классификации языков программирования и изучением их индивидуальных особенностей. Тесно связана с другими ветвями информатики, результаты теории используются в математике, в программной инженерии и лингвистике.
Конструктивная математика — абстрактная наука о конструктивных процессах, человеческой способности осуществлять их, и об их результатах — конструктивных объектах.
Логика второго порядка в математической логике — формальная система, расширяющая логику первого порядка возможностью квантификации общности и существования не только над переменными, но и над предикатами. Логика второго порядка несводима к логике первого порядка. В свою очередь, она расширяется логикой высших порядков и теорией типов.
Формальный язык в математической логике и информатике — множество конечных слов (строк, цепочек) над конечным алфавитом. Понятие языка чаще всего используется в теории автоматов, теории вычислимости и теории алгоритмов. Научная теория, которая имеет дело с этим объектом, называется теорией формальных языков.
Теория доказательств — это раздел математической логики, представляющий доказательства в виде формальных математических объектов, осуществляя их анализ с помощью математических методов. Доказательства обычно представляются в виде индуктивно определённых структур данных, таких как списки и деревья, созданных в соответствии с аксиомами и правилами вывода формальных систем. Таким образом, теория доказательств является синтаксической, в отличие от семантической теории моделей. Вместе с теорией моделей...
Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
Форма́льная систе́ма (форма́льная тео́рия, аксиоматическая теория, аксиоматика, дедуктивная система) — результат строгой формализации теории, предполагающей полную абстракцию от смысла слов используемого языка, причем все условия, регулирующие употребление этих слов в теории, явно высказаны посредством аксиом и правил, позволяющих вывести одну фразу из других.
Логи́ческое программи́рование — парадигма программирования, основанная на автоматическом доказательстве теорем, а также раздел дискретной математики, изучающий принципы логического вывода информации на основе заданных фактов и правил вывода. Логическое программирование основано на теории и аппарате математической логики с использованием математических принципов резолюций.
Каррирование (от англ. currying, иногда — карринг) — преобразование функции от многих аргументов в набор функций, каждая из которых является функцией от одного аргумента. Возможность такого преобразования впервые отмечена в трудах Готтлоба Фреге, систематически изучена Моисеем Шейнфинкелем в 1920-е годы, а наименование получило по имени Хаскелла Карри — разработчика комбинаторной логики, в которой сведение к функциям одного аргумента носит основополагающий характер.
Теория вычислимости , также известная как теория рекурсивных функций, — это раздел современной математики, лежащий на стыке математической логики, теории алгоритмов и информатики, возникшей в результате изучения понятий вычислимости и невычислимости. Изначально теория была посвящена вычислимым и невычислимым функциям и сравнению различных моделей вычислений. Сейчас поле исследования теории вычислимости расширилось — появляются новые определения понятия вычислимости и идёт слияние с математической...
Формальная верификация или формальное доказательство — формальное доказательство соответствия или несоответствия формального предмета верификации его формальному описанию. Предметом выступают алгоритмы, программы и другие доказательства.
Теория автоматов — раздел дискретной математики, изучающий абстрактные автоматы — вычислительные машины, представленные в виде математических моделей — и задачи, которые они могут решать.
Зависимый тип (англ. dependent type) в информатике и логике — тип, который зависит от некоторого значения. Зависимые типы играют ключевую роль в интуиционистской теории типов и построении функциональных языков программирования таких как ATS, Agda и...
Символьные вычисления — это преобразования и работа с математическими равенствами и формулами как с последовательностью символов. Они отличаются от численных расчётов, которые оперируют приближёнными численными значениями, стоящими за математическими выражениями. Системы символьных вычислений (их так же называют системами компьютерной алгебры) могут быть использованы для символьного интегрирования и дифференцирования, подстановки одних выражений в другие, упрощения формул и т. д.
Алгоритмическая разрешимость — свойство формальной теории обладать алгоритмом, определяющим по данной формуле, выводима она из множества аксиом данной теории или нет. Теория называется разрешимой, если такой алгоритм существует, и неразрешимой, в противном случае. Вопрос о выводимости в формальной теории является частным, но вместе с тем важнейшим случаем более общей проблемы разрешимости.
Логика высказываний , или пропозициональная логика (лат. propositio — «высказывание»), или исчисление высказываний — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
Теория моделей — раздел математической логики, который занимается изучением связи между формальными языками и их интерпретациями, или моделями. Название теория моделей было впервые предложено Тарским в 1954 году. Основное развитие теория моделей получила в работах Тарского, Мальцева и Робинсона.
Структурная индукция — конструктивный метод математического доказательства, обобщающий математическую индукцию (применяемую над натуральным рядом) на произвольные рекурсивно определённые частично упорядоченные совокупности. Структурная рекурсия — реализация структурной индукции в форме определения, процедуры доказательства или программы, обеспечивающая индукционный переход над частично упорядоченной совокупностью.
Формализа́ция — представление какой-либо содержательной области (рассуждений, доказательств, процедур классификации, поиска информации, научных теорий) в виде формальной системы или исчисления.
Исчисление процессов или алгебра процессов — семейство связанных подходов к формальному моделированию параллельных систем.
Сема́нтика в программировании — дисциплина, изучающая формализации значений конструкций языков программирования посредством построения их формальных математических моделей. В качестве инструментов построения таких моделей могут использоваться различные средства, например, математическая логика, λ-исчисление, теория множеств, теория категорий, теория моделей, универсальная алгебра. Формализация семантики языка программирования может использоваться как для описания языка, определения свойств языка...
Тео́рия алгори́тмов — наука, находящаяся на стыке математики и информатики, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач, асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п. Вместе с математической логикой теория алгоритмов...
Темпоральная логика (англ. temporal (от лат. tempus) logic) — это логика, в высказываниях которой учитывается временной аспект. Используется для описания последовательностей явлений и их взаимосвязи по временной шкале.
Классическая логика — термин, используемый в математической логике по отношению к той или иной логической системе, для указания того, что для данной логики справедливы все законы (классического) исчисления высказываний, в том числе закон исключения третьего.
Формальные методы занимаются приложением довольно широкого класса фундаментальных техник теоретической информатики: разные исчисления логики, формальных языков, теории автоматов, формальной семантики, систем типов и алгебраических типов данных.
Интуициони́зм — совокупность философских и математических взглядов, рассматривающих математические суждения с позиций «интуитивной убедительности». Различаются две трактовки интуиционизма: интуитивная убедительность, которая не связана с вопросом существования объектов, и наглядная умственная убедительность.
Те́зис Чёрча — Тью́ринга — это гипотеза, постулирующая эквивалентность между интуитивным понятием алгоритмической вычислимости и строго формализованными понятиями частично рекурсивной функции и функции, вычислимой на машине Тьюринга. В связи с интуитивностью исходного понятия алгоритмической вычислимости, данный тезис носит характер суждения об этом понятии и его невозможно строго доказать или опровергнуть. Перед точным определением вычислимой функции математики часто использовали неофициальный термин...
Отображение онтологий (англ. ontology alignment или ontology matching) — это процесс установления соответствий между понятиями (концептами) нескольких онтологий. Множество таких соответствий и называется «отображением». Термин имеет разное значение в компьютерной, когнитивной областях и философии.
Математи́ческая структу́ра — название, объединяющее понятия, общей чертой которых является их применимость к множествам, природа которых не определена. Для определения самой структуры задают отношения, в которых находятся элементы этих множеств. Затем постулируют, что данные отношения удовлетворяют неким условиям, которые являются аксиомами рассматриваемой структуры.
Тип-сумма (англ. sum type; также Σ-тип, меченое объединение) — конструкция в языках программирования и интуиционистской теории типов, тип данных, построенный как дизъюнктное объединение исходных типов.
Формализм — один из подходов к философии математики, пытающийся свести проблему оснований математики к изучению формальных систем. Наряду с логицизмом и интуиционизмом считался в XX веке одним из направлений фундаментализма в философии математики.
Теория комбинаторных схем — это часть комбинаторики (раздела математики), рассматривающая существование, построение и свойства семейств конечных множеств, структура которых удовлетворяет обобщённым концепциям равновесия и/или симметрии. Эти концепции не определены точно, так что объекты широкого диапазона могут пониматься как комбинаторные схемы. Так, в одном случае комбинаторные схемы могут представлять собой пересечения множеств чисел, как в блок-схемах, а в другом случае могут отражать расположение...
Подробнее: Комбинаторная схема
Модальная логика (от лат. modus — способ, мера) — логика, в которой кроме стандартных логических связок, переменных и/или предикатов есть модальности (модальные операторы).
В логике логи́ческими опера́циями называют действия, вследствие которых порождаются новые понятия, с использованием уже существующих. В более узком смысле, понятие логической операции используется в математической логике и программировании.
Подробнее: Логическая операция
Абстра́ктный тип да́нных (АТД) — это математическая модель для типов данных, где тип данных определяется поведением (семантикой) с точки зрения пользователя данных, а именно в терминах возможных значений, возможных операций над данными этого типа и поведения этих операций.
Теоретическая информатика — это научная область, предметом изучения которой являются информация и информационные процессы, в которой осуществляется изобретение и создание новых средств работы с информацией. Это подразделение общей информатики и математики, которое сосредотачивается на более абстрактных или математических аспектах вычислительной техники и включает в себя теорию алгоритмов.
Метало́гика — изучение метатеории логики. В то время, как логика представляет собой исследование способов применения логических систем для рассуждения, доказательств и опровержений, металогика исследует свойства самих логических систем.
Алгебраи́ческий тип да́нных — в информатике наиболее общий составной тип, представляющий собой тип-сумму из типов-произведений. Алгебраический тип имеет набор конструкторов, каждый из которых принимает на вход значения определённых типов и возвращает значение конструируемого типа. Конструктор представляет собой функцию, которая строит значение своего типа на основе входных значений. Для последующего извлечения этих значений из алгебраического типа используется сопоставление с образцом.
Пролог (англ. Prolog) — язык и система логического программирования, основанные на языке предикатов математической логики дизъюнктов Хорна, представляющей собой подмножество логики предикатов первого порядка.
Гомотопическая теория типов (HoTT, от англ. homotopy type theory) — математическая теория, особый вариант теории типов, снабжённый понятиями из теории категорий, алгебраической топологии, гомологической алгебры; базируется на взаимосвязи между понятиями о гомотопическом типе пространства, высших категориях и типах в логике и языках программирования.
Тео́рия мно́жеств — раздел математики, в котором изучаются общие свойства множеств — совокупностей элементов произвольной природы, обладающих каким-либо общим свойством. Создана во второй половине XIX века Георгом Кантором при значительном участии Рихарда Дедекинда, привнесла в математику новое понимание природы бесконечности, была обнаружена глубокая связь теории с формальной логикой, однако уже в конце XIX — начале XX века теория столкнулась со значительными сложностями в виде возникающих парадоксов...
Тип-произведение (также Π-тип, произведение типов; англ. product type) — конструкция в языках программирования и интуиционистской теории типов, тип данных, построенный как декартово произведение исходных типов; другими словами — кортеж типов, или «кортеж как тип». Использованные типы и порядок их следования определяют сигнатуру типа-произведения; порядок следования объектов в создаваемом кортеже сохраняется на протяжении его времени жизни согласно заданной сигнатуре.