Связанные понятия
Эритроци́ты (от греч. ἐρυθρός — красный и κύτος — вместилище, клетка), также известные под названием кра́сные кровяны́е тельца́, — клетки крови позвоночных животных (включая человека) и гемолимфы некоторых беспозвоночных (сипункулид, у которых эритроциты плавают в полости целома, и некоторых двустворчатых моллюсков). Они насыщаются кислородом в лёгких или в жабрах и затем разносят его (кислород) по телу животного.
Миоглоби́н — кислородосвязывающий белок скелетных мышц и мышцы сердца. Функция миоглобина заключается в создании в мышцах кислородного резерва, который расходуется по мере необходимости, восполняя временную нехватку кислорода.
Липи́ды (от др.-греч. λίπος — жир) — обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот, сложных — из спирта, высокомолекулярных жирных кислот и других компонентов. Содержатся во всех живых клетках.
Цитохромы (гемопротеины) — это крупные мембранные белки (за исключением наиболее распространённого цитохрома c, который является маленьким глобулярным белком), которые содержат ковалентно связанный гем, расположенный во внутреннем кармане, образованном аминокислотными остатками.
Гем ы (от др.-греч. ἁίμα — «кровь») — комплексные соединения порфиринов с двухвалентным железом, несущие один или два аксиальных лиганда. Гемы выступают в роли простетических групп (небелковых частей) белков — гемопротеинов (гемоглобинов, миоглобина, цитохромов и др.).
Упоминания в литературе
Железо сосредоточено главным образом в эритроцитах крови, в печени, селезенке, а также в костном мозге. Самая важная функция, которую выполняет железо в организме, это перенос кислорода посредством
гемоглобина , действующего как обратимый переносчик газов (кислорода и углекислого газа) от легких к тканям и обратно. Железо участвует также в окислительно-восстановительных процессах в организме и иммунобиологических реакциях, необходимых для процессов роста и кроветворения. При недостатке железа в организме возникает железодефицитная анемия. При этом уменьшается активность клеточных защитных механизмов.
Гемоглобин – основной компонент эритроцитов, то есть красных кровяных телец – представляет собой сложный белок, состоящий из гемма (железосодержащая часть) и глобина (белковая часть). Главная функция гемоглобина состоит в переносе кислорода от легких к тканям, а также в выведении углекислого газа из организма и регуляции кислотно-основного состояния.
Например, зрелые эритроциты обходятся без ядра, отчего имеют характерную форму двояковогнутых дисков. В таких эритроцитах содержится железосодержащий белок –
гемоглобин , который призван транспортировать в связанной форме поступающий в организм кислород. В легочных альвеолах гемоглобин связывает кислород, в результате чего превращается в оксигемоглобин, который придает артериальной крови светло-красный оттенок. Дойдя до клеточных структур в тканях в таком связанном виде, кислород освобождается из связи. В итоге вновь получается свободный гемоглобин, а венозная кровь темнеет. Следует добавить, что, кроме кислорода, гемоглобин может связывать некоторое количество углекислого газа, образуя с ним соединение карбогемоглобин, транспортируемое в легкие, где и освобождается от него.
Роль железа в организме чрезвычайно велика. Основная его функция – дыхательная. Железо, содержащееся в
гемоглобине , обеспечивает транспорт кислорода кровью. Чтобы справиться с этой задачей, металл должен быть двухвалентным. Железо, входящее в состав ферментов тканевого дыхания, напротив, обязательно изменяет свою валентность при транспорте электронов в дыхательной цепи. Роль железа не исчерпывается дыхательной функцией. Оно входит в состав важнейших ферментов антиоксидантной защиты клеток (каталазы, пероксидаз) и ферментов системы обезвреживания чужеродных веществ в печени (цитохромов Р-450). Но оно же способно значительно повредить клетки; Fe+H– инициатор процесса перекисного окисления липидов (ПОЛ).
Следующим клеточным элементом в эритроидном ряду являются нормоциты. В зависимости от степени насыщения
гемоглобином они подразделяются на базофильные, полихроматофильные и оксифильные, или ортохромные, нормоциты. Гемоглобин скапливается в цитоплазме при непосредственном участии в этом процессе ядра. Этот факт подтверждается первоначальным появлением гемоглобина вокруг ядра. Непрерывное накопление гемоглобина в цитоплазме клетки обусловливает восприимчивость как кислых, так и основных красок. При абсолютном насыщении клетки гемоглобином цитоплазма при окрашивании приобретает розовый цвет. Такой тип клеток носит название оксифильного нормоцита.
Связанные понятия (продолжение)
Физиологические условия — термин биологии, биохимии и медицины, обозначающий условия внешней или внутренней среды, которые могут встречаться в природе для данного организма или группы клеток в противовес искусственным, лабораторным условиям. Для большинства земных организмов под такими условиями обычно подразумевают температурный интервал 20-40 °С, атмосферное давление в одну атмосферу, pH 6,5-8, концентрацию глюкозы 1-20 мМ, атмосферную концентрацию кислорода и углекислого газа, физиологическую...
Ферме́нты (от лат. fermentum) — обычно достаточно сложные молекулы белка, рибосом или их комплексы, ускоряющие химические реакции в живых системах. Каждый фермент, свернутый в определённую структуру, ускоряет соответствующую химическую реакцию: реагенты в такой реакции называются субстратами, а получающиеся вещества — продуктами. Ферменты специфичны к субстратам: АТФ-аза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу.Ферментативная активность может регулироваться...
Билируби́н (от лат. bilis — жёлчь и лат. ruber — красный) — жёлчный пигмент, один из главных компонентов жёлчи в организме человека и животных. Образуется в норме как результат расщепления белков, содержащих гем: гемоглобина, миоглобина и цитохрома. Распад гемоглобина происходит в клетках ретикуломакрофагальной системы костного мозга, селезёнки, лимфатических узлов и печени, откуда конечные продукты попадают в жёлчь и выводятся из организма.В крови билирубин содержится в небольших количествах в виде...
Пла́зма кро́ви (от греч. πλάσμα «нечто сформированное, образованное») — жидкая часть крови, в которой взвешены форменные элементы — вторая часть крови. Процентное содержание плазмы в крови составляет 52—61 %. Макроскопически представляет собой однородную несколько мутную (иногда почти прозрачную) желтоватую жидкость, собирающуюся в верхней части сосуда с кровью после осаждения форменных элементов. Гистологически плазма является межклеточным веществом жидкой ткани крови.
Мочевая кислота — бесцветные кристаллы, плохо растворимы в воде, этаноле, диэтиловом эфире, растворимы в растворах щелочей, горячей серной кислоте и глицерине.
Кле́тки кро́ви , или кровяны́е кле́тки, — клетки, входящие в состав крови и образующиеся в красном костном мозге в ходе гемопоэза. Существует три основных типа клеток крови: эритроциты (красные кровяные клетки), лейкоциты (белые кровяные клетки) и тромбоциты (кровяные пластинки). Часть объёма крови, приходящуюся на клетки, называют гематокритом. Более 99 % гематокрита приходится на эритроциты. У женщин его значение в норме составляет 0,37—0,47, у мужчин — 0,4—0,54. Клетки крови выполняют разнообразные...
Эстеразы — ферменты, катализирующие в клетках гидролитическое расщепление сложных эфиров (англ. esters) на спирты и кислоты при участии молекул воды (гидролиз).
Подробнее: Эстераза
Тромбоциты (от греч. θρόμβος — сгусток и κύτος — клетка; устаревшее название — кровяные пластинки) — это небольшие (2—3 мкм) безъядерные плоские бесцветные форменные элементы крови, образующиеся из мегакариоцитов.
Лейкоци́ты (от др.-греч. λευκός — белый и κύτος — вместилище, тело) — белые кровяные клетки; неоднородная группа различных по внешнему виду и функциям клеток крови человека или животных, выделенная по признакам наличия ядра и отсутствия самостоятельной окраски. Образуются в красном костном мозге. Продолжительность жизни колеблется от нескольких часов до нескольких лет. Главная функция лейкоцитов — защита организма от инфекций, чужеродных белков и инородных тел, способных нанести ему вред, - поддержание...
Клеточное или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (АТФ, которых в результате процесса образуется 38 и др.) и может быть использована по мере необходимости. Входит в группу процессов катаболизма. О физиологических процессах транспортировки к клеткам многоклеточных...
Эритропоэз (от греч. «erythro — «красный», и греч. poiesis — «делать») — это одна из разновидностей процесса гемопоэза (кроветворения), в ходе которой образуются красные кровяные клетки (эритроциты). Эритропоэз стимулируется уменьшением доставки кислорода к тканям, которое детектируется почками. Почки в ответ на тканевую гипоксию или ишемию выделяют гормон эритропоэтин, который стимулирует эритропоэз. Этот гормон стимулирует пролиферацию и дифференциацию клеток-предшественников красного кровяного...
Феррити́н — сложный белковый комплекс (железопротеид), выполняющий роль основного внутриклеточного депо железа у человека и животных. Структурно состоит из белка апоферритина и атома трехвалентного железа в составе фосфатного гидроксида. Одна молекула ферритина может содержать до 4000 атомов железа. Содержится практически во всех органах и тканях и является донором железа в клетках, которые в нём нуждаются.В 2001 году учёным удалось открыть ферритин, который содержится в митохондриях (ген FTMT...
Гликогено́лиз — биохимический процесс расщепления гликогена до глюкозы, осуществляется главным образом в печени и мышцах и не требует затрат энергии. Основная задача гликогенолиза — поддержание постоянного уровня глюкозы в крови. Регуляция гликогенолиза осуществляется совместно с регуляцией гликогеногенеза по типу переключения одного на другое. Важнейшими гормонами, участвующими в регуляции гликогеногенеза, являются инсулин, глюкагон и адреналин.
Гликоге́н — полисахарид состава (C6H10O6)n, образованный остатками глюкозы, соединёнными связями α-1→4 (в местах разветвления — α-1→6). В клетках животных служит основным запасным углеводом и основной формой хранения глюкозы. Откладывается в виде гранул в цитоплазме в клетках многих типов (главным образом в клетках печени и мышц).
Глутатион (2-амино-5-{амино}-5-оксопентаноевая кислота, англ. glutathione, GSH) — это трипептид γ-глутамилцистеинилглицин. Глутатион содержит необычную пептидную связь между аминогруппой цистеина и карбоксильной группой боковой цепи глутамата. Значение глутатиона в клетке определяется его антиоксидантными свойствами. Фактически глутатион не только защищает клетку от токсичных свободных радикалов, но и в целом определяет окислительно-восстановительные характеристики внутриклеточной среды.
Жёлчные кислоты — производные холановой кислоты С23Н39СООН, отличающиеся тем, что к её кольцевой структуре присоединены гидроксильные группы.
Окислительный стресс (оксидативный стресс, от англ. oxidative stress) — процесс повреждения клетки в результате окисления.
Активные формы кислорода (АФК, реактивные формы кислорода, РФК, англ. Reactive oxygen species, ROS) — включают ионы кислорода, свободные радикалы и перекиси как неорганического, так и органического происхождения. Это, как правило, небольшие молекулы с исключительной реактивностью благодаря наличию неспаренного электрона на внешнем электронном уровне.
Альдолаза (фруктозобисфосфат-(фруктозодифосфат)-альдолаза) — фермент, катализирующий превращение фруктозо-1,6-дифосфата в дигидроксиацетонфосфат и глицеральдегид-3-фосфат в процессе гликолиза. Фермент играет важнейшую роль в энергетическом обмене.
Липо́лиз — метаболический процесс расщепления жиров на составляющие их жирные кислоты под действием липазы.
Альдегиддегидрогеназы — группа ферментов, катализирующих окисление альдегидов. Играют важную роль в выведении алкоголя из организма.
Подробнее: Альдегиддегидрогеназа
Бе́та-окисле́ние (β-окисление), также цикл Кноопа — Линена, — метаболический процесс деградации жирных кислот. Своё название процесс получил по 2-му углеродному атому (С-3 или β-положение) от карбоксильной группы (-СООН) жирной кислоты, который подвергается окислению и последовательному отделению от молекулы. Продуктами каждого цикла β-окисления являются ФАДH2, НАДH и ацетил-КоА. Реакции β-окисления и последующего окисления ацетил-КоА в цикле Кребса служат одним из основных источников энергии для...
Субстра́т в биохимии — исходное вещество, преобразуемое ферментом в результате специфического фермент-субстратного взаимодействия в один или несколько конечных продуктов. После окончания катализа и высвобождения продукта реакции активный центр фермента снова становится вакантным и может связывать другие молекулы субстрата.
Метаболи́зм (от греч. «превращение», «изменение») или обме́н веще́ств — набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.
Подробнее: Обмен веществ
Гексокина́за (АТФ-зависимая D-гексоза-6-фосфотрансфераза) (КФ 2.7.1.1) — цитоплазматический фермент класса трансфераз, подкласса фосфотрансфераз, первый фермент пути гликолиза. В отличие от глюкокиназы, константа Михаэлиса гексокиназы равна 0,1 ммоль/л, следовательно, гексокиназа, локализованная в клетках большинства тканей организма человека, буквально «вылавливает» глюкозу из плазмы крови, тогда как глюкокиназа катализирует реакцию фосфорилирования глюкозы лишь при высоких её концентрациях. Соответственно...
Липофусцин (lipofuscinum; от греч. lipo – «жир» и лат. fuscus – «темный»;), также известный как «пигмент старения», — жёлто-коричневый аутофлюоресцирующий пигмент, состоящий из гликолипопротеидного матрикса, встречающийся повсеместно во всех тканях и органах человека. В клетках обычно концентрируется вокруг ядра в лизосомах в виде остаточных, резидуальных, телец. По разным мнениям, липофусцин образуется и накапливается в результате окисления ненасыщенных жиров или в случае повреждения мембран органелл...
Аффинность (лат. affinitas — родственность) — термодинамическая характеристика, количественно описывающая силу взаимодействия веществ (например, антигена и антитела). Аффинность можно определить по закону действующих масс как отношение концентрации комплекса антиген — антитело к произведению концентраций компонентов. Высокой аффинностью в случае антител считают 1012 М−1, низкой аффинностью — 105 М−1.
Кето́новые тела ́ (синоним: ацето́новые тела, ацето́н ) — группа продуктов обмена веществ, которые образуются в печени из ацетил-КоА...
Липидный обмен — или метаболизм липидов, представляет собой сложный биохимический и физиологический процесс, происходящий в некоторых клетках живых организмов.
Креатин — это азотсодержащая карбоновая кислота, которая встречается в организме позвоночных. Участвует в энергетическом обмене в мышечных и нервных клетках. Креатин был выделен в 1832 году Шеврёлем из скелетных мышц. Название было образовано от др.-греч. κρέας (род. п. κρέατος) «мясо».
Сиаловые кислоты (от др.-греч. σίαλον «слюна») — общее название N- и O-замещённых производных нейраминовой кислоты, моносахарида с девятиатомной углеродной цепью. Наиболее распространённого представителя этого класса — N-ацетилнейраминовую кислоту (НАНК, Neu5Ac) — также часто называют сиаловой кислотой. Широко распространены в тканях животных, однако встречаются также у растений, грибов и бактерий. Впервые были обнаружены в 1930-е годы Гуннаром Бликсом, Эрнстом Кленком и другими в качестве преобладающих...
Цикл мочевины или орнитиновый цикл (цикл Кребса-Гензелейта) — последовательность биохимических реакций млекопитающих и некоторых рыб, в результате которой азотсодержащие продукты распада преобразуются в мочевину, которая в свою очередь выделяется почками. В большинстве случаев таким образом происходит превращение аммиака. У птиц и рептилий конечным продуктом выделения является не мочевина, а мочевая кислота. Земноводные и большинство рыб не преобразуют аммиак в другие соединения, поскольку вследствие...
Анаболи́зм (от греч. ἀναβολή, «подъём») или пластический обмен — совокупность химических процессов, составляющих одну из сторон обмена веществ в организме, направленных на образование высокомолекулярных соединений.
Агрегация клеток — слипание клеток в многоклеточное образование — агрегат. Агрегация происходит как при нормальном развитии организмов, так и в эксперименте — после искусственного разобщения клеток, например протеолитическими ферментами и веществами, связывающими ионы кальция. При агрегации клетки «сортируются»: однотипные слипаются, а разнотипные остаются разобщёнными. Способность клеток к агрегации зависит от температуры и ионного состава среды, а, по некоторым данным, также от появления на поверхности...
Трипсин — фермент класса гидролаз, расщепляющий пептиды и белки; обладает также эстеразной (гидролиз сложных эфиров) активностью.
Жёлчные (или же́лчные) пигме́нты, также билины — биологические пигменты, линейные тетрапирролы, формально являющиеся производными билана (билиногена) с окисленными терминальными пиррольными ядрами, образующиеся при катаболизме гема. Впервые выделены из жёлчи, которой придают характерную окраску, откуда и получили своё название; цвет различных жёлчных пигментов — от жёлто-оранжевого до сине-зелёного. Образуются во многих организмах как продукт метаболизма некоторых порфиринов. Билин (также называемый...
Искусственная кровь — общее название для целого ряда кровезаменителей, призванных выполнить и улучшить функции традиционной донорской крови. Особо интенсивные научно-исследовательские работы в данном направлении, хотя и разными методами, до и особенно после 2000 года начали вести группы учёных из России, Японии, США, Швеции, Германии и других стран.
Адипоцит — клетка, из которой в основном состоит жировая ткань. Адипоциты участвуют в жировом обмене, обладают способностью накапливать жиры, которые в дальнейшем используются организмом для выработки энергии.
Оксидазы — окислительные ферменты класса оксидоредуктаз. В настоящее время найдено очень много разнообразных окислительных ферментов, как растительного, так и животного происхождения. В живых клетках оксидазы служат катализаторами окислительно-восстановительных реакций и классифицируются на металлоферменты и флавопротеиды.
Метаболи́ты (от греч. μεταβολίτης, metabolítes) — продукты метаболизма каких-либо соединений.
Биосинтез — процесс синтеза природных органических соединений живыми организмами. Путь биосинтезного соединения — это приводящая к образованию этого соединения последовательность реакций, как правило, ферментативных (генетически детерминированных), но изредка встречаются и спонтанные реакции, обходящиеся без ферментативного катализа. Например, в процессе биосинтеза лейцина одна из реакций является спонтанной и протекает без участия фермента. Биосинтез одних и тех же соединений может идти различными...
Изоферменты , или изоэнзимы — это различные по аминокислотной последовательности изоформы или изотипы одного и того же фермента, существующие в одном организме, но, как правило, в разных его клетках, тканях или органах.
Пентозофосфа́тный путь (пентозный путь, гексозомонофосфатный шунт, путь Варбурга — Диккенса — Хорекера) — альтернативный путь окисления глюкозы (наряду с гликолизом и путём Энтнера — Дудорова), включает в себя окислительный и неокислительный этапы.
Холестери́н (др.-греч. χολή — жёлчь и στερεός — твёрдый) — органическое соединение, природный полициклический липофильный спирт, содержащийся в клеточных мембранах всех животных и человека, однако его нет в клеточных мембранах растений, грибов, а также у прокариотических организмов (археи, бактерии итд.).
Тра́нспортные белки ́ — собирательное название большой группы белков, выполняющих функцию переноса различных лигандов как через клеточную мембрану или внутри клетки (у одноклеточных организмов), так и между различными клетками многоклеточного организма. Транспортные белки могут быть как интегрированными в мембрану, так и водорастворимыми белками, секретируемыми из клетки, находящимися в пери- или цитоплазматическом пространстве, в ядре или органеллах эукариот.
Упоминания в литературе (продолжение)
Красное вещество в красных кровяных шариках, состоящее из гема и белка (глобина), известно как
гемоглобин . Важная функция гемоглобина – переносить кислород из легких в ткани организма, а углекислый газ – из тканей в легкие. При недостатке гемоглобина возникают анемии разных видов.
Гликолизированный
гемоглобин . Гликолизированный гемоглобин – это форма гемоглобина, возникшая в результате неферментативной химической реакции гемоглобина с глюкозой или другими моносахаридами, циркулирующими в крови. В результате такой реакции к молекуле гемоглобина присоединяется остаток моносахарида. Количество образовавшегося гликолизированного гемоглобина пропорционально концентрации глюкозы в крови и зависит от длительности взаимодействия гемоглобина с сахарами. Таким образом, содержание гликолизированного гемоглобина характеризует средний уровень содержания глюкозы в крови на протяжении относительно длительного промежутка времени – периода жизни молекулы гемоглобина (около 3–4 месяцев).
Как показали многие исследования, состав периферической крови при лечебном голодании существенно не меняется: сохраняется нормальное количество эритроцитов и
гемоглобина , а также лейкоцитов и тромбоцитов. Щелочной резерв крови не нарушается. На первом этапе – до ацидотического криза – он несколько снижается, но после ацидотического криза вновь увеличивается. У большинства больных наблюдаются благоприятные сдвиги со стороны электрокардиограмм (ЭКГ). Деформированные мембраны стареющих клеток на эндогенном питании, по данным экспериментальных наблюдений, приобретают формы, подобные молодым клеткам (у животных), т. е. идет процесс восстановления барьерной функции клеток. В период восстановительного питания происходит своего рода омоложение клеток и тканей проголодавшегося организма. В основе этого феномена лежит так называемый возбужденный синтез белков, когда в структурных белках тканей заметно снижается количество липоидного фосфора и так называемых балластных белков и возрастает содержание нуклеиновых кислот (ДНК и РНК).
Существенная роль в живых организмах принадлежит и всем остальным элементам, названным выше. Так, атомы Mg входят в состав хлорофилла, а Fe –
гемоглобина . Иод содержится в составе молекулы тироксина (гормона щитовидной железы), а Zn – молекулы инсулина (гормона поджелудочной железы). Наличие ионов Na и К необходимо для проведения нервного импульса, для осуществления транспорта через клеточную мембрану. СолиРиСавбольшом количестве есть в костях, раковинах моллюсков, что обеспечивает высокую прочность этих образований.
При сгорании табака выделяется окись углерода, обладающая свойством связывать дыхательный пигмент крови –
гемоглобин . При этом образуется карбоксигемоглобин, который не может переносить кислород, что приводит к нарушению процессов тканевого дыхания.
Имеются данные, свидетельствующие, что при приеме препаратов спирулины спирулиновый хлорофилл, легко доступный для клеточного метаболизма, крупными блоками встраивается в процессы биосинтеза
гемоглобина – белка эритроцитов, являющихся основными переносчиками кислорода. Вот почему спирулина в короткие сроки нормализует функцию кроветворных органов и ликвидирует анемию.
1) медь активизирует синтез
гемоглобина , участвует в процессах клеточного дыхания и хранении кислорода в клетках головного мозга. Кроме того, медь входит в состав комплексных соединений с белками (медь-протеины), которые участвуют в переносе кислорода, подобно гемоглобину;
Одним из показателей наличия компенсации является так называемый гликозилированный
гемоглобин . Наличие данного химического соединения в крови определяется несложным лабораторным анализом (этот тест также можно провести и в домашних условиях, воспользовавшись электронным прибором). Гликозилированный гемоглобин представляет собой красный кровяной пигмент гемоглобин, химически связанный с глюкозой. Уровень его содержания демонстрирует средние показатели уровня сахара в крови за длительный промежуток времени. При диабете на фоне гипергликемии количество гликозилированного гемоглобина увеличивается, в норме же данный параметр составляет около 7 %.
Одним из показателей наличия компенсации является так называемый гликозилированный
гемоглобин . Наличие данного химического соединения в крови определяется несложным лабораторным анализом (этот тест также можно провести и в домашних условиях, воспользовавшись электронным прибором). Гликозилированный гемоглобин представляет собой красный кровяной пигмент гемоглобин, химически связанный с глюкозой. Уровень его содержания демонстрирует средние показатели уровня сахара в крови за длительный промежуток времени. При диабете на фоне гипергликемии количество гликозилированного гемоглобина увеличивается, в норме же данный параметр составляет около 7 %.
• понижение концентрации
гемоглобина – анемия (группа синдромов, общим моментом для которых является снижение концентрации гемоглобина в крови, чаще при одновременном уменьшении числа эритроцитов), задержка жидкости в организме (гипергидратация);
Пигментный обмен представляет собой захват клетками печени из крови билирубина как результат превращения
гемоглобина . Гемоглобин содержится в эритроцитах, которые в среднем через 120 дней разрушаются. Гемоглобин трансформируется в билирубин клетками ретикулоэндотелиальной системы печени, костного мозга и селезенки. Стареющие эритроциты удаляются из циркуляции и разрушаются в селезенке, печени и в меньшей степени в костном мозге клетками фагоцитирующих мононуклеаров. Фракция IgG сыворотки содержит аутоантитела против старых эритроцитов, прикрепление которых к эритроцитам приводит к фагоцитозу последних. При этом происходят окисление гемоглобина, разрыв в порфириновом кольце и образование пигмента вердоглобина, из которого затем освобождается железо и образуется пигмент зеленого цвета биливердин. Биливердин преобразуется в пигмент оранжевого цвета билирубин. В кровь поступает так называемый непрямой, неконъюгированный или свободный билирубин. За сутки у человека распадается около 1 % циркулирующих эритроцитов с образованием 100–250 мг билирубина. Билирубин поступает в кровь. Он плохо растворим в воде и легко адсорбируется на белках плазмы крови.
При сгорании табака выделяетсяокись углерода, обладающая свойством связывать дыхательный пигмент крови –
гемоглобин . При этом образуется кар—боксигемоглобин, который не может переносить кислород, что приводит к нарушению процессов тканевого дыхания.
В первую очередь этот микроэлемент нужен для содержащегося в крови
гемоглобина и миоглобина, которые переносят кислород ко всем клеткам тела. Соли железа входят в состав различных молекулярных систем, они работают как катализаторы жизненно важных метаболических процессов, вносят свой вклад в иммунную защиту организма.
Железо – один из наиболее важных микроэлементов в организме человека. В норме у человека есть определенный запас железа, то есть депо. Железо входит в состав
гемоглобина эритроцитов, миоглобина – белка миоцитов (клеток мышечной ткани), ферментов, участвующих в окислительно-восстановительных процессах. Не более 30 % от общего количества железа составляет резервный пул, который может быть использован на эритропоэз.
Гемоглобин – особый белок, который содержится в эритроцитах и обладает способностью присоединять кислород и переносить его к различным органам и тканям человека. Гемоглобин имеет красный цвет, что определяет характерную окраску крови. Молекула гемоглобина состоит из маленькой небелковой части, которая называется гемом и содержит железо, а также белка – глобина.
Железо – основной элемент всех окислительно-восстановительных процессов в организме. Основная его часть (около 60 %) содержится в эритроцитах в составе
гемоглобина . Именно гемоглобин отвечает в организме за функцию дыхания. С участием железа осуществляются доставка кислорода к тканям и органам и удаление из тканей углекислого газа. Подсчитано, что из 12 мг железа, поступающего в организм с пищей, усваивается лишь 1 мг, а остальные 11 удаляются вместе с калом. Ежедневно у человека разрушается определенное количество эритроцитов и железо освобождается, но основная его часть остается в организме, а не выводится. В организме существуют своеобразные хранилища железа (депо). В нормальном состоянии в депо находится около 1 г железа. Однако при некоторых заболеваниях объем депонированного железа возрастает до 40 г, что оказывает выраженное токсическое действие. Гораздо большее распространение получил дефицит железа в организме. Особенно часто это отмечается у кормящих женщин, в результате частых беременностей, в послеродовом периоде.
В качестве продуктов аэробного окисления используются глюкоза, высшие жирные кислоты, отдельные аминокислоты, кетоновые тела, молочная кислота и другие недоокисленные продукты метаболизма. Все эти вещества постепенно превращаются в единое вещество – ацетил-КоА, который окисляется в цикле лимонной кислоты до конечных продуктов диоксида углерода и воды с участием многочисленных окислительных ферментов и кислорода, доставляемого к тканям
гемоглобином эритроцитов крови, а в скелетных мышцах – с участием кислорода, накапливаемого белком миоглобина. Скорость образования АТФ в процессе окислительного фосфорилирования зависит от следующих факторов:
Гемолиз – разрушение эритроцитов, сопровождающееся выходом из них
гемоглобина . При этом кровь или взвесь эритроцитов превращается в прозрачную красную жидкость (лаковая кровь). Гемолиз может происходить в крови (внутрисосудистый) и в органах (внутриклеточный). В норме наблюдается главным образом внутриклеточный гемолиз, при этом часть эритроцитов ежедневно разрушается, преимущественно в костном мозге и селезенке, а освободившийся гемоглобин превращается в билирубин. При повышенном гемолизе увеличивается образование билирубина и выделение его с желчью, а также выделение уробилина, стеркобилина и других уробилиноидов с калом и мочой. Если при внутрисосудистом гемолизе освобождается много гемоглобина и система гаптоглобинов не справляется с его переработкой, возникают гемоглобинемия и гемосидеринемия, иногда гемоглобинурия. Следствием гемолиза является гемолитическая анемия. Резкое усиление степени гемолиза (гемолитический криз) обычно приводит к развитию выраженной анемии. Причинами гемолиза являются физические факторы (действие высоких и низких температур, ультразвука), химические факторы (гемолитические яды, лекарственные средства и др.), переливание несовместимой крови, введение гипотонических растворов и др.
Кобальт обнаруживается в крови в белково-связанной форме и лишь частично как структурный компонент витамина В12, играющего важную роль в синтезе
гемоглобина крови, участвует в процессах переноса метиловых групп и других важных биохимических реакциях.
Железо участвует в процессе связывания, переноса и передачи кислорода. Оно помогает крови насыщать органы и ткани жизненно необходимым кислородом. Ионы железа входят в состав молекул миоглобина и
гемоглобина , окрашивая кровь в красный цвет. Также железо участвует в процессах тканевого дыхания, играет важную роль в процессах кроветворения.
Важнейшим продуктом жизнедеятельности клетки являются макромолекулы – органические полимеры, составленные из повторяющихся простых блоков. Например, белки (или протеины) состоят из чередующихся между собой 20 различных аминокислот. В зависимости от длины и состава последовательности аминокислот каждый белок обладает своей особой функцией. Общее количество функций белков огромно. Например, белок
гемоглобин переносит кислород, белки коллаген и эластин придают упругость стенке сосуда, кератин – защищает покровы тела от механического повреждения. Есть белки, которые служат переносчиками сигналов между клетками (пептидные гормоны, цитокины) или играют роль приемников таких сигналов (рецепторы). Однако наиболее разнообразны белки-ферменты, которые ускоряют каждый свой аспект метаболизма (образование или расщепление того или иного сахара, аминокислоты, макромолекулы). В отсутствие ферментов биохимические процессы в клетке шли бы в тысячи раз медленнее, если вообще были бы возможны. Иногда ферменты собираются в большие нанофабрики, такие как рибосомы (заведующие сборкой новых белков, согласно инструкциям, поступающим из клеточного ядра), протеасомы (фабрики по утилизации просроченных или избыточных белков), сплайсосомы (наномашины для доработки инструкций – матричных РНК).
Эритроциты – безъядерные клетки крови животных и человека. Они содержат
гемоглобин , который легко соединяется с кислородом. В капиллярах гемоглобин отдает кислород тканям (выделяет в межклеточную жидкость) и присоединяет к себе углекислый газ. После гибели эритроцит распадается на белковую часть – глобин и красящее вещество – гем. От молекулы гема отсоединяется желчный пигмент – билирубин, который выводится из организма. Остатки эритроцита с током крови переносятся в костный мозг и используются для образования новых эритроцитов. Это происходит в костном мозгу грудины, ребер, позвонков, в диафизах трубчатых костей, в лимфатических железах и селезенке.
Железо необходимо человеческому организму в небольших количествах, но оно играет большую роль во многих процессах. В частности, около половины всего железа в организме человека существует в форме
гемоглобина – вещества, которое придает крови красный цвет. Гемоглобин переносит кислород из легких по всему телу, так что низкое содержание железа вызывает усталость и мышечную слабость. Железо требуется для мышечных белков и откладывается про запас в печени и почках. В тех случаях, когда поступление железа в организм недостаточное на протяжении длительного периода, его запасы истощаются, и начинает развиваться анемия. Железо теряется при кровотечениях разного рода (особенно большие потери железа отмечаются у женщин во время месячных регул). Однако повышенное количество железа, поступающего в организм человека, может привести к усилению активности свободных радикалов, приносящих вред всем клеткам тела. Эффективное использование железа происходит только в сочетании с медью, кальцием и аскорбиновой кислотой.
Гистидин относится к частично незаменимым аминокислотам. У детей он в организме не синтезируется, у взрослых – синтезируется, но не в полном объеме. Он является предшественником гистамина, который вызывает аллергические реакции, но также играет важную роль в функционировании иммунитета. Гистидин входит в состав
гемоглобина , участвует в переносе кислорода. Также способствует росту тканей и их регенерации в случае повреждений.
Железо необходимо для нормального течения гемопоэза, процесса образования
гемоглобина , активации тканевых ферментов, катализирующих процессы тканевого дыхания. При недостатке железа развивается гипохромная (железодефицитная) анемия, отмечается ослабление иммунитета, нарушается сердечный ритм, появляется одышка. Резко снижается работоспособность и выносливость организма.
В процессе созревания эритроцитов в V классе происходят синтез и накопление
гемоглобина , редукция органелл и клеточного ядра. В норме пополнение эритроцитов осуществляется за счет деления и дифференцировки созревающих клеток – пронормоцитов, базофильных и полихроматофильных нормоцитов. Такой тип кроветворения получил название гомопластического. При выраженной кровопотере пополнение эритроцитов осуществляется не только усилением созревающих клеток, но и клеток IV, III, II и даже I класса – происходит гетеропластический тип кроветворения.
Белок мышц обеспечивает их сократительную функцию. Кроме того, белок является составной частью
гемоглобина и участвует в транспортировке кислорода. Белок крови (фибриноген) играет важную роль в процессе свертывания крови.
У взрослого человека
гемоглобина А 98 %, гемоглобина F 2 %. У новорожденного ребенка гемоглобина А 20 %, гемоглобина F 80 %. Продолжительность жизни эритроцитов – 120 дней. Старые эритроциты разрушаются макрофагами, в основном, в селезенке, освобождающиеся из них железо используется созревающими эритроцитами. В периферической крови от 1 % до 5 % эритроцитов являются незрелыми и носят название ретикулоцитов. Их содержание отражает интенсивность эритроцитарного кроветворения и имеет важное диагностическое и прогностическое значение. Пойкилоцитоз – наличие в периферической крови большого количества эритроцитов разной формы. Анизоцитоз – наличие в периферической крови большого количества эритроцитов разного размера.
Железо входит в ферменты в виде хелатов (органо-металлических соединений). Участвует в транспорте электронов, в окислительно-восстановительных процессах, входит в состав
гемоглобина и миоглобина; поддерживает иммунитет.
Соли железа необходимы для кроветворения, обеспечивают транспортировку кислорода от легких к тканям всех органов, в том числе и мозга. Железо входит в состав
гемоглобина – красного пигмента крови. Железо необходимо для построения клеточного ядра.