Связанные понятия
Липи́ды (от др.-греч. λίπος — жир) — обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот, сложных — из спирта, высокомолекулярных жирных кислот и других компонентов. Содержатся во всех живых клетках.
Гликогено́лиз — биохимический процесс расщепления гликогена до глюкозы, осуществляется главным образом в печени и мышцах и не требует затрат энергии. Основная задача гликогенолиза — поддержание постоянного уровня глюкозы в крови. Регуляция гликогенолиза осуществляется совместно с регуляцией гликогеногенеза по типу переключения одного на другое. Важнейшими гормонами, участвующими в регуляции гликогеногенеза, являются инсулин, глюкагон и адреналин.
Глюконеогене́з — метаболический путь, приводящий к образованию глюкозы из неуглеводных соединений (в частности, пирувата). Наряду с гликогенолизом, этот путь поддерживает в крови уровень глюкозы, необходимый для работы многих тканей и органов, в первую очередь, нервной ткани и эритроцитов. Он служит важным источником глюкозы в условиях недостаточного количества гликогена, например, после длительного голодания или тяжёлой физической работы. Глюконеогенез является обязательной частью цикла Кори, кроме...
Глико́лиз , или путь Эмбдена — Мейергофа — Парнаса (от греч. γλυκός — сладкий и греч. λύσης — расщепление) — процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты. Гликолиз состоит из цепи последовательных ферментативных реакций и сопровождается запасанием энергии в форме АТФ и НАДH. Гликолиз является универсальным путём катаболизма глюкозы и одним из трёх (наряду с пентозофосфатным путём и путём Энтнера — Дудорова) путей окисления глюкозы...
Глюко́за , или виноградный сахар, или декстроза (D-глюкоза), C6H12O6 — органическое соединение, моносахарид (шестиатомный гидроксиальдегид, гексоза), один из самых распространённых источников энергии в живых организмах на планете. Встречается в соке многих фруктов и ягод, в том числе и винограда, от чего и произошло название этого вида сахара. Глюкозное звено входит в состав полисахаридов (целлюлоза, крахмал, гликоген) и ряда дисахаридов (мальтозы, лактозы и сахарозы), которые, например, в пищеварительном...
Упоминания в литературе
Печени принадлежит ведущее место в обмене углеводов. Она представляет собой огромное депо, в котором откладываются запасы резервного углевода –
гликогена . По его содержанию печень стоит на первом месте (на втором находятся мышцы). При необходимости, например при усиленной мышечной работе или при стрессе, гликоген распадается с образованием глюкозы и идет на удовлетворение возросших нужд организма в энергии. Если потребность в углеводах отпадает, то под воздействием сложных нервно-гормональных механизмов в печени опять начинает запасаться гликоген. Печень должна поддерживать гликоген на определенном уровне, так как только при этом условии сохраняется ее устойчивость к воздействию вредных факторов внешней среды. Поэтому при заболеваниях печени особенно важно обеспечить поступление в организм достаточного количества глюкозы.
Транспорт глюкозы через клеточную мембрану происходит с участием белков-переносчиков, которые транспортируют глюкозу через клеточную мембрану внутрь клетки посредством облегченной диффузии. Главный активатор трансмембранного переноса глюкозы – инсулин. После поступления в клетки глюкоза сразу же используется для образования энергии или накапливается в виде
гликогена (полимер из молекул глюкозы). Все клетки тела способны запасать некоторое количество гликогена, но только клетки печени, скелетные мышечные волокна и клетки миокарда могут депонировать большие запасы гликогена. Гликолиз и окислительное фосфорилирование углеводов – процессы регулируемые. Оба процесса постоянно контролируются в соответствии с потребностями клеток в АТФ, по механизмам обратной связи. Когда запасы углеводов в организме становятся ниже нормального уровня, то умеренное количество глюкозы может образовываться из аминокислот и из глицериновой части жиров в процессе глюконеогенеза. Приблизительно 60 % аминокислот в белках организма могут легко превращаться в углеводы.
Большое значение в энергетических процессах имеют такие полисахариды, как крахмал и
гликоген , мономером которых выступает глюкоза. Они представляют собой резервные вещества растений и животных соответственно. При наличии в организме большого количества глюкозы она используется для синтеза этих веществ, которые накапливаются в клетках тканей и органов. Так, крахмал в больших количествах содержится в плодах, семенах, клубнях картофеля; гликоген – в печени, мышцах. По мере необходимости данные вещества расщепляются, поставляя глюкозу в различные органы и ткани организма.
Функции: Переводит глюкозу в
гликоген и усиливает транспорт глюкозы из крови в клетки. Гликоген – углевод, в форме которого у животных хранится запас углеводов – основного источника энергии, которая расходуется для жизнедеятельности клеток, в том числе мышечных и нервных. По мере необходимости, гликоген может распадаться до глюкозы. В мышечных клетках энергия может получаться непосредственно из гликогена (см. раздел 3.4). Переводя глюкозу в гликоген и транспортируя глюкозу в клетки, инсулин уменьшает содержание глюкозы в крови. Это вызывает чувство голода. Быстрое повышение инсулина в крови может вызывать ухудшение функций ЦНС из-за снижения содержания глюкозы в крови, являющейся единственным источником энергии для клеток ЦНС. Ухудшение функций ЦНС может проявляться в плохом самочувствии, общей слабости, потери сознания и смерти.
Энергетическая ценность одного грамма углеводов составляет 4 ккал. Если сахара-углеводы поступают с пищей в достаточном количестве, то они откладываются про запас в печени и мышцах в виде сложного сахара
гликогена , который еще называют животным крахмалом. При необходимости, например, при физической нагрузке, гликоген расщепляется до глюкозы, поступает в кровь и разносится ко всем тканям организма. При избыточном употреблении сахаров-углеводов они переходят в жир, и если жировой ткани в организме откладывается слишком много, то это приводит к развитию заболевания – ожирению.
Связанные понятия (продолжение)
Липо́лиз — метаболический процесс расщепления жиров на составляющие их жирные кислоты под действием липазы.
Липаза (англ. Lipase), иногда Стеапсин (англ. steapsin) — водорастворимый фермент, который катализирует гидролиз нерастворимых эстеров-липидных субстратов, помогая переваривать, растворять и фракционировать жиры.
Пентозофосфа́тный путь (пентозный путь, гексозомонофосфатный шунт, путь Варбурга — Диккенса — Хорекера) — альтернативный путь окисления глюкозы (наряду с гликолизом и путём Энтнера — Дудорова), включает в себя окислительный и неокислительный этапы.
Ферме́нты (от лат. fermentum) — обычно достаточно сложные молекулы белка, рибосом или их комплексы, ускоряющие химические реакции в живых системах. Каждый фермент, свернутый в определённую структуру, ускоряет соответствующую химическую реакцию: реагенты в такой реакции называются субстратами, а получающиеся вещества — продуктами. Ферменты специфичны к субстратам: АТФ-аза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу.Ферментативная активность может регулироваться...
Адипоцит — клетка, из которой в основном состоит жировая ткань. Адипоциты участвуют в жировом обмене, обладают способностью накапливать жиры, которые в дальнейшем используются организмом для выработки энергии.
Фосфолипи́ды — сложные липиды, сложные эфиры многоатомных спиртов и высших жирных кислот. Содержат остаток фосфорной кислоты и соединённую с ней добавочную группу атомов различной химической природы.
Белки ́ (протеи́ны, полипепти́ды) — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут...
Биосинтез — процесс синтеза природных органических соединений живыми организмами. Путь биосинтезного соединения — это приводящая к образованию этого соединения последовательность реакций, как правило, ферментативных (генетически детерминированных), но изредка встречаются и спонтанные реакции, обходящиеся без ферментативного катализа. Например, в процессе биосинтеза лейцина одна из реакций является спонтанной и протекает без участия фермента. Биосинтез одних и тех же соединений может идти различными...
Гликопротеи́ны (устар. гликопротеиды) — это двухкомпонентные белки, в которых белковая (пептидная) часть молекулы ковалентно соединена с одной или несколькими группами гетероолигосахаридов. Кроме гликопротеинов существуют также протеогликаны и гликозаминогликаны.
Цитозо́ль (англ. cytosol, происходит от греч. κύτος — клетка и англ. sol от лат. solutio — раствор) — жидкое содержимое клетки. Большую часть цитозоля занимает внутриклеточная жидкость. Цитозоль разбивается на компартменты при помощи разнообразных мембран. У эукариот цитозоль располагается под плазматической мембраной и является частью цитоплазмы, в которую, помимо цитозоля, входят митохондрии, пластиды и другие органеллы, но не содержащаяся в них жидкость и внутренние структуры. Таким образом, цитозоль...
Липидный обмен — или метаболизм липидов, представляет собой сложный биохимический и физиологический процесс, происходящий в некоторых клетках живых организмов.
Глутатион (2-амино-5-{амино}-5-оксопентаноевая кислота, англ. glutathione, GSH) — это трипептид γ-глутамилцистеинилглицин. Глутатион содержит необычную пептидную связь между аминогруппой цистеина и карбоксильной группой боковой цепи глутамата. Значение глутатиона в клетке определяется его антиоксидантными свойствами. Фактически глутатион не только защищает клетку от токсичных свободных радикалов, но и в целом определяет окислительно-восстановительные характеристики внутриклеточной среды.
Амила́за (др.-греч. ἄμυλον — крахмал) — фермент, гликозил-гидролаза, расщепляющий крахмал до олигосахаридов, относится к ферментам пищеварения. В истории амилаза стала первым открытым ферментом, когда французский химик Ансельм Пайен описал в 1833 году диастазу — фермент (на самом деле, смесь ферментов), расщепляющий крахмал до мальтозы. Согласно другим данным, амилазу в 1814 году открыл академик петербургской Академии наук К. С. Кирхгоф. Именно амилаза приводит к появлению сладковатого вкуса при...
Гексокина́за (АТФ-зависимая D-гексоза-6-фосфотрансфераза) (КФ 2.7.1.1) — цитоплазматический фермент класса трансфераз, подкласса фосфотрансфераз, первый фермент пути гликолиза. В отличие от глюкокиназы, константа Михаэлиса гексокиназы равна 0,1 ммоль/л, следовательно, гексокиназа, локализованная в клетках большинства тканей организма человека, буквально «вылавливает» глюкозу из плазмы крови, тогда как глюкокиназа катализирует реакцию фосфорилирования глюкозы лишь при высоких её концентрациях. Соответственно...
Олигосахариды — углеводы, содержащие от 2 до 10 моносахаридных остатков (от греч. ὀλίγος — немногий).
Протеа́зы, протеиназы, протеолитические ферменты — ферменты из класса гидролаз, которые расщепляют пептидную связь между аминокислотами в белках. Кроме них, пептидную связь расщепляют также протеасомы.
Подробнее: Протеаза
Углево́ды — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.
Холестери́н (др.-греч. χολή — жёлчь и στερεός — твёрдый) — органическое соединение, природный полициклический липофильный спирт, содержащийся в клеточных мембранах всех животных и человека, однако его нет в клеточных мембранах растений, грибов, а также у прокариотических организмов (археи, бактерии итд.).
Трипсин — фермент класса гидролаз, расщепляющий пептиды и белки; обладает также эстеразной (гидролиз сложных эфиров) активностью.
Гидролазы (КФ3) — это класс ферментов, катализирующий гидролиз ковалентной связи. Общий вид реакции, катализируемой гидролазой, выглядит следующим образом...
Аденозинтрифосфа́т или Аденозинтрифосфорная кислота (сокр. АТФ, англ. АТР) — нуклеозидтрифосфат, имеющий большое значение в обмене энергии и веществ в организмах. АТФ — универсальный источник энергии для всех биохимических процессов, протекающих в живых системах, в частности для образования ферментов. Открытие вещества произошло в 1929 году группой учёных Гарвардской медицинской школы — Карлом Ломаном, Сайрусом Фиске и Йеллапрагадой Суббарао, а в 1941 году Фриц Липман показал, что АТФ является основным...
Липогенез — процесс, посредством которого ацетил-КоА превращается в жирные кислоты. Ацетил-КоА представляет собой промежуточную стадию метаболизма простых сахаров, например таких как глюкоза. Посредством липогенеза и последующего синтеза триглицеридов организм эффективно запасает энергию в виде жиров.
Миоглоби́н — кислородосвязывающий белок скелетных мышц и мышцы сердца. Функция миоглобина заключается в создании в мышцах кислородного резерва, который расходуется по мере необходимости, восполняя временную нехватку кислорода.
Галакто́за (от греческого корня γάλακτ-, «молоко») — один из простых сахаров, моносахарид из группы гексоз. Отличается от глюкозы пространственным расположением водородной и гидроксильной групп у 4-го углеродного атома. Содержится в животных и растительных организмах, в том числе в некоторых микроорганизмах. Входит в состав дисахаридов — лактозы и лактулозы. При окислении образует галактоновую, галактуроновую и слизевую кислоты. L-галактоза входит в состав полисахаридов красных водорослей. D-галактоза...
Глиоксила́тный цикл , или глиоксила́тный шунт — анаболический путь, имеющийся у растений, бактерий, протистов и грибов, представляет собой видоизменённый цикл трикарбоновых кислот. Глиоксилатный цикл служит для превращения ацетил-СоА в сукцинат, который далее используется для синтеза углеводов. У микроорганизмов он обеспечивает утилизацию простых углеродных соединений в качестве источника углерода, когда более сложные источники, например, глюкоза, недоступны, а также может считаться одной из анаплеротических...
Гликогеногене́з — метаболический путь синтеза гликогена из глюкозы, происходящий с расходованием энергии в виде ATP и UTP. Гликогеногенез происходит во всех тканях животных, однако в основном он имеет место в печени и мышцах. Синтез гликогена происходит в период пищеварения (в абсорбтивный период, т. е. 1—2 часа после приёма углеводной пищи.
Лизосо́ма (от греч. λύσις — разложение и σώμα — тело) — окружённый мембраной клеточный органоид, в полости которого поддерживается кислая среда и находится множество растворимых гидролитических ферментов. Лизосома отвечает за внутриклеточное переваривание макромолекул, в том числе при аутофагии; лизосома способна к секреции своего содержимого в процессе лизосомного экзоцитоза; также лизосома участвует в некоторых внутриклеточных сигнальных путях, связанных с метаболизмом и ростом клетки.
Жирные кислоты — алифатические одноосновные карбоновые кислоты с открытой цепью, содержащиеся в этерифицированной форме в жирах, маслах и восках растительного и животного происхождения. Жирные кислоты, как правило, содержат неразветвленную цепь из чётного числа атомов углерода (от 4 до 24, включая карбоксильный) и могут быть как насыщенными, так и ненасыщенными.
Аденозинмонофосфат (AМФ, adenosine monophosphate) 5'-аденилат, это эфир фосфорной кислоты и аденозинового нуклеозида. Молекула АМФ содержит фосфатную группу, сахар рибозу и азотистое основание аденин (A). АМФ играет важную роль во многих клеточных процессах обмена веществ. АМФ также компонент синтеза РНК.
Глутамин (также Глютамин) (2-аминопентанамид-5-овая кислота) — одна из 20 стандартных аминокислот, входящих в состав белка. Глутамин полярен, не заряжен и является амидом моноаминодикарбоновой глутаминовой кислоты, образуясь из неё в результате прямого аминирования под воздействием глутаминсинтетазы.
Гликолипиды — (от греч. γλυκός (glykos) — сладкий и λίπος (lípos) — жир) сложные липиды, образующиеся в результате соединения липидов с углеводами. В молекулах гликолипидов есть полярные «головы» (углевод) и неполярные «хвосты» (остатки жирных кислот). Благодаря этому гликолипиды (вместе с фосфолипидами) входят в состав клеточных мембран.
Жёлчные кислоты — производные холановой кислоты С23Н39СООН, отличающиеся тем, что к её кольцевой структуре присоединены гидроксильные группы.
Полисахариды — высокомолекулярные углеводы, полимеры моносахаридов (гликаны). Молекулы полисахаридов представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды. У живых организмов выполняют резервные (крахмал, гликоген), структурные (целлюлоза, хитин) и другие функции.
Аминокисло́ты (аминокарбо́новые кисло́ты; АМК) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Основные химические элементы аминокислот - это углерод (C), водород (H), кислород (O), и азот (N), хотя другие элементы также встречаются в радикале определенных аминокислот. Известны около 500 встречающихся в природе аминокислот (хотя только 20 используются в генетическом коде).
Физиологические условия — термин биологии, биохимии и медицины, обозначающий условия внешней или внутренней среды, которые могут встречаться в природе для данного организма или группы клеток в противовес искусственным, лабораторным условиям. Для большинства земных организмов под такими условиями обычно подразумевают температурный интервал 20-40 °С, атмосферное давление в одну атмосферу, pH 6,5-8, концентрацию глюкозы 1-20 мМ, атмосферную концентрацию кислорода и углекислого газа, физиологическую...
Анаболи́зм (от греч. ἀναβολή, «подъём») или пластический обмен — совокупность химических процессов, составляющих одну из сторон обмена веществ в организме, направленных на образование высокомолекулярных соединений.
Тра́нспортные белки ́ — собирательное название большой группы белков, выполняющих функцию переноса различных лигандов как через клеточную мембрану или внутри клетки (у одноклеточных организмов), так и между различными клетками многоклеточного организма. Транспортные белки могут быть как интегрированными в мембрану, так и водорастворимыми белками, секретируемыми из клетки, находящимися в пери- или цитоплазматическом пространстве, в ядре или органеллах эукариот.
Факторы роста — это естественные соединения, способные стимулировать рост, пролиферацию и/или дифференцировку живых клеток. Как правило, это пептиды или стероидные гормоны. Факторы роста функционируют как сигнальные молекулы для взаимодействия между клетками. Примерами являются цитокины и гормоны, связываемые специфическими клеточными рецепторами. Итальянский нейробиолог Рита Леви-Монтальчини за открытие факторов роста, в частности, фактора роста нервов, получила вместе с Стэнли Коэном Нобелевскую...
Пепти́ды (греч. πεπτος «питательный») — семейство веществ, молекулы которых построены из двух и более остатков аминокислот, соединённых в цепь пептидными (амидными) связями —C(O)NH—. Обычно подразумеваются пептиды, состоящие из α-аминокислот, однако термин не исключает пептидов, полученных из любых других аминокарбоновых кислот.
Фосфатидилхоли́н ы ― группа фосфолипидов, содержащих холин. Также входят в группу лецитинов. Фосфатидилхолины одни из самых распространенных молекул клеточных мембран.
Активные формы кислорода (АФК, реактивные формы кислорода, РФК, англ. Reactive oxygen species, ROS) — включают ионы кислорода, свободные радикалы и перекиси как неорганического, так и органического происхождения. Это, как правило, небольшие молекулы с исключительной реактивностью благодаря наличию неспаренного электрона на внешнем электронном уровне.
Кле́точная мембра́на (также цитолемма, плазмалемма, или плазматическая мембрана) — эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.
Лектины (от лат. legere — собирать) — белки и гликопротеины, обладающие способностью высокоспецифично связывать остатки углеводов на поверхности клеток, в частности, вызывая их агглютинацию. Лектины нередко участвуют в клеточном распознавании, например, некоторые патогенные микроорганизмы используют лектины для прикрепления к клеткам поражённого организма. Первоначально лектины были выделены из семян растений, однако они найдены у большинства живых организмов. Лектины могут вызывать агглютинацию...
Гликозаминогликаны , мукополисахариды (от лат. mucus – слизь) — углеводная часть протеогликанов, полисахариды, в состав которых входят аминосахара-гексозамины. В организме гликозаминогликаны ковалентно связаны с белковой частью протеогликанов и в свободном виде не встречаются.
Фосфатидилсерин — фосфорорганическое соединение, производное фосфатидной кислоты, в котором атом водорода замещён на остаток серина, относится к фосфолипидам. Является компонентом внутреннего слоя плазматической мембраны.
Упоминания в литературе (продолжение)
Главными источниками энергии и материалом для построения клеток в организме человека являются белки, жиры и углеводы. Для обмена веществ, кроме того, необходимы вода, различные минеральные соли, витамины, кислород. Белки, жиры и углеводы, окисляясь (сгорая) в организме, выделяют тепло, которое принято измерять калориями. Окисляясь в организме, 1 г белка и углеводов выделяет 4,0 ккал, а 1 г жира – 9,0 ккал. Сахарный диабет – заболевание, проявляющееся в первую очередь расстройством углеводного обмена. В нормальных условиях глюкоза образуется в желудочно-кишечном тракте из углеводов, а также частично из жиров и белков пищи под действием пищеварительных соков и ферментов, вырабатываемых поджелудочной железой. Через слизистую оболочку кишечника глюкоза поступает в кровь и попадает в печень, где частично (5 %) преобразуется в
гликоген (животный крахмал) и откладывается в ней. Примерно 30 % глюкозы превращается в жир, остальная попадает из печени в кровеносную систему, а затем во все органы и клетки организма. Глюкоза – источник расходуемой энергии. Пополнение объема глюкозы происходит за счет гликогена печени, который, вновь превращаясь в глюкозу, поступает в кровь. В этом процессе непосредственное участие принимает инсулин.
Печень, как чуткий прибор, следит за постоянством состава глюкозы в кровотоке. Когда из кишечника ее поступает слишком много, печень преобразует глюкозу в нерастворимое соединение –
гликоген – и откладывает его про запас в своих дольках. В случае же повышенной потребности организма в сахаре, например во время усиленной мозговой или мышечной работы, а также при голодании, гликоген снова превращается в глюкозу и поступает в кровь. Печень может синтезировать гликоген даже из молочной кислоты – вредного продукта, образующегося в скелетных мышцах в процессе их работы.
Если глюкагон отвечает за использование питательных веществ, то инсулин – за их хранение. Под действием инсулина сахар, жир и белки направляются из кровеносного русла в клетки. Процесс перемещения питательных веществ из крови в клетки имеет жизненно важное значение по двум причинам. Во-первых, при этом клетки получают энергию и строительные материалы, необходимые для их жизнедеятельности и обновления, а уровень сахара в крови поддерживается в сбалансированном состоянии, что защищает мозг от опасных для него перепадов концентрации глюкозы. Во-вторых, инсулин подает сигнал о поступлении в организм избытка глюкозы, и печень начинает превращать лишнюю глюкозу в
гликоген и жир.
Глюкоза (декстроза) – главный источник энергии для питания мозга, эритроцитов и мышечных клеток. Она содержится в плодах и ягодах. У человека с массой тела 70 кг головной мозг потребляет в сутки около 100 г глюкозы, поперечно-полосатые мышцы – 35 г, эритроциты – 30 г. Для образования в печени
гликогена , как и для регуляции аппетита, тоже необходима глюкоза. Если вы испытываете желание что-нибудь съесть, это сигнал о том, что содержание глюкозы в крови понижено.
• функция запаса питательных веществ. В клетке углеводы накапливаются в виде
гликогена (у человека и животных). Это запасная форма углеводов, расходуется она по мере возникновения потребности в энергии. В печени при полноценном питании может накапливаться до 10 % гликогена, а при голодании его содержание может снижаться до 0,2 % массы печени;
В диетологии углеводы разделяются на простые (сахарные) и сложные, более важные с точки зрения рационального питания. Простые углеводы называются моносахаридами (это фруктоза и глюкоза). Моносахариды быстро растворяются в воде, это способствует их поступлению из кишечника в кровь. Сложные углеводы построены из нескольких молекул моносахаридов и называются полисахаридами. К полисахаридам относятся все разновидности сахаров: молочный, свекловичный, солодовый и другие, а также клетчатка, крахмал и
гликоген . Гликоген является важнейшим элементом для развития выносливости у спортсменов, относится к полисахаридам, вырабатывается в организме животными. Хранится в печени и мышечной ткани, в мясе гликоген почти не содержится, так как после смерти живых организмов он распадается. Организм усваивает углеводы за достаточно короткое время. Глюкоза, попадая в кровь, сразу становится источником энергии, воспринимаемым всеми тканями организма. Глюкоза необходима для нормального функционирования мозга и нервной системы.
Углеводы также являются важнейшим компонентом питания. Они поступают в организм с растительной пищей. В некоторых случаях углеводы могут образовываться из белков и жиров, поэтому их не рассматривают как незаменимый компонент питания. Они являются основным источником энергии в организме – примерно 60 % энергии получается за счёт углеводов. Резервы их незначительны и предоставлены в виде
гликогена в мышцах и печени.
Глюкоза и фруктоза (последняя медленнее всасывается из кишечника, не требует для своего усвоения гормона инсулина) наиболее быстро усваиваются и используются в организме как источники энергии и для образования
гликогена в печени и мышцах. Глюкоза – главный поставщик энергии для мозга.
В мышцах
гликоген используется исключительно в качестве резервного «топлива» для образования АТФ во время мышечного сокращения. Если для мышечного сокращения требуется больше энергии, чем дает окисление глюкозы и (или) жирных кислот, то дополнительное образование энергии может в течение сравнительно длительного времени происходить за счет окисления гликогена.
Те самые диуретики, которые помогают женщинам справляться с предменструальным напряжением, увеличивая выделение жидкости, приводят к утрате организмом калия. Поэтому женщина, принимающая диуретики, должна потреблять больше калийсодержащих продуктов, в частности имбирь. При дефиците калия и мужчины, и женщины страдают от слабой неврогенитальной отзывчивости. Калий необходим для стимуляции нервных импульсов, идущих из нервных центров мозга к мышцам с приказом начать сокращения мошонки или стенок вагины. Он также необходим для нормального роста тела, корректировки щелочного баланса организма, здоровья кожи, нормального клеточного метаболизма и ферментативных реакций, не говоря уже о синтезе мышечного протеина из аминокислот крови, стимуляции почек в очищении организма от ядовитых шлаков и превращения глюкозы в
гликоген , а также для производства энергии. Калий синергетически работает вместе с другими микроэлементами.
Инсулин поддерживает уровень сахара в крови на оптимальном уровне (от 3,33 до 5,55 ммоль/л), помогает преобразовывать глюкозу в
гликоген . Это своеобразный запас питательных веществ, откладывающийся в мышцах и печени. Гликоген представляет собой резерв глюкозы, которая при дефиците питательных веществ поступает в кровь и позволяет организму быстро восстановить силы. Кроме того, инсулин повышает проницаемость клеточных стенок, обеспечивая полноценную транспортировку глюкозы. Этот гормон также регулирует белковый и жировой обмен. Стабилизация уровня сахара в крови происходит следующим образом. Через некоторое время после приема пищи уровень глюкозы возрастает (то есть развивается гипергликемия). Поджелудочная железа реагирует на изменение химического баланса крови выбросом инсулина. Под воздействием данного гормона уровень сахара в крови снижается. Соответственно, продуцирование инсулина замедляется. Глюкагон, наравне с упомянутым ранее гормоном, отвечает за стабильный уровень сахара в крови. Но, как ни странно, действует он совсем иначе. Глюкагон способствует расщеплению гликогена, содержащегося в печени, и повышению уровня глюкозы. При необходимости он высвобождает питательные вещества из жировой ткани. Гормон соматостатин замедляет секрецию инсулина, не допуская перерасхода глюкозы и развития стойкой гипогликемии. Помимо упомянутых выше веществ, уровень сахара в крови регулируется и другими гормонами, например адреналином, норадреналином, половыми гормонами, глюкокортикоидами, гормоном щитовидной железы и т. п.
Гликоген , содержащийся в мышце, в таких вот условиях будет расщепляться без участия кислорода на молочную кислоту-лактат. Точнее даже без участия кислорода гликоген расщепляется не полностью, а лишь до образования молочной кислоты. Само собой при таком расщеплении будет выделяться энергия необходимая для синтеза АТФ. Упрощенно наша формула будет выглядеть так:
Инсулин играет важную роль в регуляции углеводного обмена. При действии этого гормона снижается уровень глюкозы в сыворотке крови (гипогликемия). Норма сахара в крови составляет 4,45—6,65 ммоль/л, но под действием инсулина он понижается до 4,45 ммоль/л и более. Уровень глюкозы плазмы крови падает в результате того, что под влиянием инсулина происходит превращение глюкозы в
гликоген в мышечной ткани и печени, гормон увеличивает проницаемость ниточных стенок для сахара, поэтому глюкоза усиленно проникает внутрь клеток, где она и усваивается. Также инсулин препятствует расщеплению белков и превращению их в молекулы глюкозы. В то же время он способствует образованию белков из аминокислот, влияет на жировой обмен – тормозит распад жиров и липидов.
Углеводы – один из основных источников энергии для организма: ими обеспечивается не менее половины суточного энергопотребления (в среднем около 67 %). Также они необходимы для нормального обмена белков и жиров и входят в состав некоторых биологически важных соединений. Часть углеводов запасается в мышцах и печени в виде
гликогена , который служит своеобразным легко мобилизирующимся энергетическим материалом и впоследствии используется по мере необходимости.
Калий обеспечивает нормальную работу сердца и отвечает за выведение жидкости из организма, благотворно влияет на нервную систему, участвует в синтезе белков, АТФ (эта кислота – аккумулятор энергии в клетке) и
гликогена (это вещество – запасник углеводов в клетках печени и мышц). Калий замедляет частоту сердечных сокращений, помогая в ряде случаев устранению аритмии, участвует в передаче сигналов от нервных окончаний.
L-карнитин синтезируется в печени и почках на основе двух аминокислот (лизин и метионин), трех витаминов (ниацин, В6 и С), а также железа. Почти все запасы карнитина в организме локализуются в мышцах. Главной функцией карнитина является обеспечение транспорта жирных кислот в митохондрии, где они подвергаются окислению. Это позволяет больше использовать энергию жиров, сохраняя имеющиеся запасы
гликогена . Еще более эффективно жиры «сжигаются» при одновременном приеме кофеина (активизирующего жиры) и карнитина («сжигающего» эти жиры). Карнитин также обладает антиоксидантным и антигипоксическим эффектами. Он содействует насыщению мышц кислородом, а также играет важную роль в восстановлении организма после физических нагрузок. Самая серьезная проблема с усвоением карнитина заключается в том, что организм усваивает только от 5 до 15 %, а остальное выводится из организма. Этот показатель можно улучшить, если принимать карнитин вместе с углеводами. Рекомендуемая доза приема карнитина – 1–2 г в сутки. Однако ряд исследований не подтвердил эргогенного действия от приема дополнительных доз L-карнитина.
Важно, чтобы количество
гликогена в печени было не ниже определенного уровня, так как недостаток гликогена в печени снижает ее устойчивость к различным вредным воздействиям. Уменьшение гликогена в печени – сигнал о ее заболевании. Поэтому важно при болезнях печени обеспечить достаточный приток глюкозы, а также витамина С, способствующего отложению гликогена в печени. А еще печень и поджелудочная железа поддерживают на постоянной высоте уровень сахара в крови.
В энергетическом балансе организма основную роль играют инсулин и глюкагон, которые поддерживают его на определенном уровне при различных состояниях организма. Во время голодания уровень инсулина в крови понижается, а глюкагона – повышается, особенно на 3-5-й день голодания (примерно в 3–5 раз). Увеличение секреции глюкагона вызывает повышенный распад белка в мышцах и способствует пополнению запасов
гликогена в печени. В течение суток мозговая ткань поглощает от 100 до 150 г глюкозы. Повышенная продукция глюкагона повышает в крови уровень свободных жирных кислот, которые используются сердечной и другими мышцами, печенью, почками в качестве энергетического материала. При длительном голодании источником энергии становятся и кетокислоты, образующиеся в печени. При естественном голодании (в течение ночи) или при длительных перерывах в приеме пищи (6-12 ч) энергетические потребности инсулинзависимых тканей организма поддерживаются за счет жирных кислот.
В мышцах и печени содержится около 1,5 кг
гликогена , который является резервом углеводов в организме. При недостаточном поступлении углеводов эти запасы быстро расходуются, а в дальнейшем углеводы в организме синтезируются из белков и жиров, что способствует накоплению в крови недоокисленных продуктов обмена.
Для поддержания довольно длительной мышечной деятельности необходимо постоянное восстановление АТФ с той же скоростью, с которой он расходуется. Необходимая для ресинтеза АТФ энергия поступает в результате окисления углеводов, жиров, белков, а также за счет расщепления креатинфосфата и
гликогена (глюкозы). Распад этих веществ сопровождается освобождением энергии, запасенной в их химических связях. Эта свободная энергия обеспечивает связывание АДФ и фосфата с образованием АТФ.
Углеводный обмен в печени происходит так. В результате расщепления различных дисахаридов образуются такие моносахариды, как глюкоза, фруктоза и галактоза, которые и всасываются в пищеварительном тракте. Они поступают в печень, там фруктоза и галактоза превращаются в глюкозу, накапливающуюся в виде
гликогена . Позже печень снова превращает гликоген в глюкозу, и тогда концентрация глюкозы в выходящей из печени крови становится выше, чем в крови, входящей в печень. Таким способом печень поддерживает концентрацию глюкозы в крови на сравнительно постоянном уровне в любое время суток. При поступлении белков в организм в достаточном количестве печень способна превращать в глюкозу до 60 % аминокислот пищи.
Углеводный обмен. Большая часть углеводов поступает в кровь в виде глюкозы. Поступающая с кровью воротной вены глюкоза может утилизироваться ферментом глюкокиназой при чрезмерном ее количестве. В результате процесса фосфорилирования, катализируемого глюкиназой, в печени образуется глюкозо-6-фосфат. Он является субстратом для таких процессов, как синтез
гликогена , гликолиза, пентознофосфатного пути и гидролиза.
Углеводы в мускулатуре рыбы превышают 1 %, представлены в основном
гликогеном (животным крахмалом). При распаде гликогена (гидролизе или фосфоролизе) образуются глюкоза, пировиноградная и молочная кислоты. Гликоген участвует в процессах созревания рыбы при посмертных изменениях, посоле, вялении. Чем больше гликогена, тем полнее процесс созревания, тем ароматнее, вкуснее готовая продукция.
Углеводный обмен в печени происходит так. В результате расщепления различных дисахаридов образуются такие моносахариды, как глюкоза, фруктоза и галактоза, которые и всасываются в пищеварительном тракте. В печени фруктоза и галактоза превращаются в глюкозу, накапливающуюся в виде
гликогена . Позже печень снова превращает гликоген в глюкозу, и тогда концентрация глюкозы в выходящей из печени крови становится выше, чем в крови, входящей в печень. Таким способом печень поддерживает концентрацию глюкозы в крови на сравнительно постоянном уровне в любое время суток. При поступлении белков в организм в достаточном количестве печень способна превращать в глюкозу до 60 % аминокислот пищи.
1) входит в состав гормоноподобного вещества, которое называется фактором усвоения глюкозы (сокращенно GTF), который усиливает действие инсулина (гормона поджелудочной железы). Хром регулирует усвоение глюкозы клетками организма, обеспечивая тем самым ее беспрепятственную транспортировку через клеточные оболочки. Также хром способствует поддержанию нормального уровня глюкозы в крови, увеличивает способность организма запасать
гликоген . Этот запас способствует развитию и увеличению мышечной массы, повышает мышечный тонус (в том числе и тонус сердечной мышцы), работоспособность и выносливость, предохраняет белки миокарда (т. е. сердечной мышцы) от разрушения;
Сегодня ученым известно только то, что в крови человека основным сахаром является глюкоза, которая обеспечивает энергетические затраты организма и, прежде всего, мышечную деятельность. Чем больше человек совершает мышечной работы, тем больше требуется углеводов для его питания. Но уровень глюкозы в крови человека, в отличие от жирных кислот, не может повышаться в несколько раз, а может колебаться только в пределах 80-120 мг%. При повышении уровня глюкозы в крови человека выше 120 мг% она начинает откладываться в качестве
гликогена у здорового человека без нарушений работы инсулярного механизма или в виде жира при метаболических нарушениях.
Моносахариды – углеводы, молекулы которых содержат от двух до семи атомов углерода и больше, один из которых образует карбонильную группу. В зависимости от количества атомов углерода их называют тетрозой, пентозой, гексозой, гептозой. В природе наиболее распространены гексозы и пентозы. К гексозам, например, относится глюкоза (декстроза). Она встречается в зеленых частях растений, семенах, различных ягодах и фруктах. Особенно много ее в зрелом винограде, откуда она и получила свое второе название – виноградный сахар. Из нее построены крахмал, целлюлоза,
гликоген . Глюкоза постоянно находится в крови человека, нормальное содержание ее колеблется от 0,085 до 0,120 %. При кратковременном приеме с пищей большого количества глюкозы процентное содержание ее значительно возрастает и она выводится с мочой. А при сахарной болезни (диабете) в крови всегда много глюкозы и она почти постоянно присутствует в моче. В медицине чистая глюкоза в виде 20– и 40 %-ного раствора применяется для внутривенных инъекций.
При лихорадке и переутомлении энергетический процесс в организме повышен. Окислительные процессы в тканях усилены. Изменение углеводного обмена при болезнях и переутомлении характеризуется быстрой убылью
гликогена в мускулатуре, поэтому и количество продуктов его распада (глюкозы, молочной кислоты и др.) бывает незначительно.
Другой важный компонент сбалансированной диеты – углеводы. Эти соединения являются основными поставщиками энергии (55–60 % от общего объема) и выполняют структурно-пластическую и защитную функции (вступая во взаимодействие с вредными соединениями, углеводы преобразуют их в безвредные растворимые вещества, которые легко выводятся из организма). Углеводы не только позволяют организму получить энергию, излишки их преобразуются в
гликоген , который накапливается в виде «стратегического запаса». При необходимости гликоген расщепляется до глюкозы и обеспечивает ее баланс.
Другой важный компонент сбалансированной диеты — углеводы. Эти соединения являются основными поставщиками энергии (55–60 %) от общего объема) и выполняют структурно-пластическую и защитную функции (вступая во взаимодействие с вредными соединениями, углеводы преобразуют их в безвредные растворимые вещества, которые легко выводятся из организма). Углеводы не только позволяют организму получить энергию, излишки их преобразуются в
гликоген , который накапливается в виде «стратегического запаса». При необходимости гликоген расщепляется до глюкозы и обеспечивает ее баланс.
По данным исследований, биотин играет важную роль в углеводном обмене при взаимодействии с инсулином – гормоном поджелудочной железы. Помимо этого, биотин участвует в производстве глюкокиназы. Это вещество ответственно за обмен глюкозы в организме. Синтез
гликогенов также не обходится без участия биотина. Сначала эти углеводы накапливаются в печени и мышцах, а затем усваиваются в процессе глюконеогенеза, при котором 16 из 22 аминокислот превращаются в глюкозу. Этот процесс особенно важен для поддержания стабильного уровня сахара в крови.
В морфологическом отношении дистрофии проявляются нарушением строения, прежде всего ультраструктуры клеток и тканей, когда нарушается регенерация на молекулярном и ультраструктурном уровнях. При многих дистрофиях в клетках и тканях обнаруживают включения «зерна», камни или кристаллы различной химической природы, которые в обычных условиях не встречаются или их количество увеличивается по сравнению с нормой. В других случаях происходит уменьшение количества соединений до исчезновения (жира,
гликогена , минеральных веществ).
Глюкагон – это другой гормон, продуцируемый островками Лангерганса, который также принимает участие в регулировании углеводного обмена. Однако по характеру воздействия он диаметрально отличается от инсулина. Глюкагон вызывает расщепление запасов
гликогена в печени, при этом образуются молекулы глюкозы. Данный гормон также обеспечивает расщепление жировых молекул в липоцитах (клетках жировой ткани).
Ванадий стимулирует деление клеток и действует как противораковое средство. Участвует в процессе роста и метаболизме жиров. Ванадий также способствует нормальному функционированию центральной нервной системы. Ванадий стимулирует преобразование избытка глюкозы в
гликоген (вещество, в виде которого в организме хранится запас глюкозы).