Связанные понятия
Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя неравная им сторона — основанием. По определению, каждый правильный треугольник также является равнобедренным, но обратное утверждение неверно.
Биссектри́са (от лат. bi- «двойное», и sectio «разрезание») угла — луч, исходящий из вершины угла и делящий угол на два равных угла. Можно также определить биссектрису как геометрическое место точек внутри угла, равноудалённых от сторон этого угла.
Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Пра́вильный многоуго́льник — это выпуклый многоугольник, у которого все стороны между собой равны и все углы между смежными сторонами равны.
Упоминания в литературе
Теорема Пифагора – это утверждение, касающееся прямоугольных
треугольников , т. е. треугольников, имеющих угол, равный 90°, иначе говоря, прямой угол. Теорема гласит, что если построить квадраты на разных сторонах такого треугольника, то сумма площадей двух меньших квадратов будет равна площади большего. Классический пример – это прямоугольный треугольник со сторонами 3-4-5, изображенный на илл. 1.
Рассмотрение так называемых «фигурных чисел», например квадратов или
треугольников , выложенных из камешков (точек), и обнаружение арифметических соотношений между последовательностями этих чисел наводило на мысль, что вероятно и геометрические фигуры также могут быть сведены к числам[2].
Анализируя результаты расчетов, следует отметить следующее: – точка фокуса практически совпадает с центром окружности, в которую вписан
треугольник , являющийся вертикальным сечением усеченной пирамиды;
Вы помните, что два расстояния 1–2 и 2–3 равны. Вопрос в том, равны ли две площади. Рассмотрим
треугольник , образованный Солнцем (S) и двумя точками 1 и 2. Какова его площадь? Она равна основанию 1–2, умноженному на половину перпендикуляра, опущенного на основание из точки S. Теперь – другой треугольник, образованный точками 2, 3 и S. Его площадь равна основанию 2–3, умноженному на половину перпендикуляра, опущенного из точки S. У этих двух треугольников одна и та же высота и, как я уже сказал, равные основания. Поэтому они имеют одинаковую площадь. Пока все идет прекрасно. Если бы со стороны Солнца не действовало никаких сил, то за равные промежутки времени описывались бы равные площади. Но Солнце действует на планету. На отрезке 1–2–3 Солнце притягивает планету, причем направление силы притяжения постепенно меняется. Чтобы получить хорошее приближение, возьмем среднее положение 2 и скажем, что весь эффект притяжения на отрезке 1–3 сводится к отклонению планеты на некоторое расстояние в направлении линии 2–S (рис. 15).
По всеобщему признанию, литература и искусство являются частью человеческой культуры. Ценность же математики, как правило, видят в её практических приложениях. Но наличие практических приложений не должно препятствовать тому, чтобы и математика рассматривалась как часть человеческой культуры. Да и сами эти приложения, если брать древнейшие из них – такие как, скажем, использование египетского
треугольника (т. е. треугольника со сторонами 3, 4, 5) для построения прямого угла – также принадлежат общекультурной сокровищнице человечества. (Кому, чьей сокровищнице принадлежит шестигранная форма пчелиных сот, обеспечивающая максимальную вместимость камеры при минимальном расходе воска на строительство её стен, – этот вопрос мы оставляем читателю для размышления.) В Древнем Египте, чтобы получить прямой угол, столь необходимый при строительстве пирамид и храмов, поступали следующим образом. Верёвку делили на 12 равных частей, точки деления, служащие границами между частями, помечали, а концы верёвки связывали. Затем за верёвку брались три человека, удерживая её в трёх точках, отстоящих друг от друга на 3, 4 и 5 частей деления. Далее верёвку натягивали до предела – так, чтобы получился треугольник. По теореме, обратной к теореме Пифагора, треугольник оказывался прямоугольным, причём тот человек, который стоял между частью длины 3 и частью длины 4, оказывался в вершине прямого угла этого треугольника.
Связанные понятия (продолжение)
Диагональ (греч. διαγώνιος; от δια- «через» + γώνια «угол») — в математике имеет геометрический смысл, а также используется при наглядном описании квадратных матриц.
Четырёхугольник (греч. τετραγωνον) — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся (см. рис.). Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеется в виду только простые четырёхугольники.
Параллелогра́мм (др.-греч. παραλληλόγραμμον от παράλληλος — параллельный и γραμμή — линия) — это четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых. Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.
Прямоугольник — четырехугольник, у которого все углы прямые (равны 90 градусам).
Многоуго́льник — это геометрическая фигура, обычно определяемая как часть плоскости, ограниченная замкнутой ломаной.
Полиамонд (англ. polyiamond) или треуго́льный мо́нстр (англ. triangular animal) — геометрическая фигура в виде многоугольника, составленного из нескольких одинаковых равносторонних треугольников, примыкающих друг к другу по рёбрам. Полиамонды можно рассматривать как конечные подмножества треугольного паркета со связной внутренностью.
Выпуклым многоугольником называется
многоугольник , все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.
Пятиугольник — многоугольник с пятью углами. Также пятиугольником называют всякий предмет такой формы.
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону (точнее, на прямую, содержащую противоположную сторону).
В геометрии вершина — это вид точки, в которой две кривые, две прямые либо два ребра сходятся. Из этого определения следует, что точка, в которой сходятся два луча, образуя угол, является вершиной, а также ею являются угловые точки многоугольников и многогранников.
Гипотенуза (греч. ὑποτείνουσα, натянутая) — самая длинная сторона прямоугольного треугольника, противоположная прямому углу. Длина гипотенузы прямоугольного треугольника может быть найдена с помощью теоремы Пифагора: квадрат длины гипотенузы равен сумме квадратов длин катетов.
Медиа́на треуго́льника (лат. mediāna — средняя) ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы.
Многогранник или полиэдр — обычно замкнутая поверхность, составленная из многоугольников, но иногда так же называют тело, ограниченное этой поверхностью.
Квадра́т — правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны. Квадрат является одновременно частным случаем ромба и прямоугольника.
Десятиуго́льник (правильный десятиугольник — декагон) — многоугольник с десятью углами и десятью сторонами.
Шестиугольник — многоугольник с шестью углами. Также шестиугольником называют всякий предмет такой формы.
Звёздчатый многоугольник — многоугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного многоугольника. Стороны звёздчатого многоугольника могут пересекаться между собой. Существует множество звёздчатых многоугольников или звёзд, среди них пентаграмма, гексаграмма, две гептаграммы, октограмма, декаграмма, додекаграмма. Звёздчатые многоугольники можно получить, продолжая одновременно все стороны правильного многоугольника после их пересечения в его вершинах до их...
Куб (др.-греч. κύβος) (иногда гекса́эдр или правильный гекса́эдр) — правильный многогранник, каждая грань которого представляет собой квадрат.
В геометрии треугольная призма — это призма с тремя боковыми гранями. Этот многогранник имеет в качестве граней треугольное основание, его копию, полученную в результате параллельного переноса и 3 грани, соединяющие соответствующие стороны. Прямая треугольная призма имеет прямоугольные боковые стороны, в противном случае призма называется косой.
Замечательные точки треугольника — точки, местоположение которых однозначно определяется треугольником и не зависит от того, в каком порядке берутся стороны и вершины треугольника.
Середина отрезка — точка на заданном отрезке, находящаяся на равном расстоянии от обоих концов данного отрезка. Является центром масс как всего отрезка, так и его конечных точек.
Энциклопедия центров треугольника (англ. The Encyclopedia of Triangle Centers = ETC) — размещённая в сети база данных, содержащая более 6000 «центров треугольника», связанных с геометрией треугольника. Энциклопедия поддерживается Кларком Кимберлингом (Clark Kimberling), профессором математики университета Эвансвилля (штат Индиана) (University of Evansville).
Диэдр — вид многогранника, состоящего из двух многоугольных граней, имеющих общий набор рёбер. В трёхмерном евклидовом пространстве он является вырожденным, если его грани плоские, в то время как в трёхмерном сферическом пространстве диэдр с плоскими гранями может рассматриваться как линза, примером которой является фундаментальная область линзового пространства L(p,q) .
Дуга́ — одно из двух подмножеств окружности, на которые её разбивают любые две различные принадлежащие ей точки. Любые две точки A и B окружности разбивают её на две части; каждая из этих частей называется дугой.
Дельто́ид (от др.-греч. δελτοειδής — «дельтовидный», напоминающий заглавную букву дельта) — четырёхугольник, в котором есть две пары смежных равных сторон.
В евклидовой геометрии равнобедренная трапеция — это выпуклый четырёхугольник с осью симметрии, проходящей через середины двух противоположных сторон. Этот четырёхугольник является частным случаем трапеций. В любой равнобедренной трапеции две противоположные стороны (основания) параллельны, а две другие стороны (боковые) имеют одинаковые длины (свойство, которому удовлетворяет также параллелограмм). Диагонали также имеют одинаковые длины. Углы при каждом основании равны и углы при разных основаниях...
Ромб (др.-греч. ῥόμβος, лат. rombus, в буквальном переводе: «бубен») — это параллелограмм, у которого все стороны равны.
В геометрии пространственный многоугольник — это многоугольник, вершины которого не компланарны. Пространственные многоугольники должны иметь по меньшей мере 4 вершины. Внутренняя поверхность таких многоугольников однозначно не определяется.
Вписанная в треугольник окружность — окружность внутри треугольника, касающаяся всех его сторон; наибольшая окружность, которая может находиться внутри треугольника. Центр этой окружности является точкой пересечения биссектрис треугольника и называется инцентром треугольника.
Треуго́льный парке́т (треугольный паркета́ж) или треугольная мозаика — это замощение плоскости равными правильными треугольниками, расположенными сторона к стороне.
Пирами́да (др.-греч. πυραμίς, род. п. πυραμίδος) — многогранник, одна из граней которого (называемая основанием) — произвольный многоугольник, а остальные грани (называемые боковыми гранями) — треугольники, имеющие общую вершину. По числу углов основания различают пирамиды треугольные (тетраэдр), четырёхугольные и т. д.
Сфе́ра (др.-греч. σφαῖρα «мяч, шар») — это геометрическое место точек в пространстве, равноудаленных от некоторой заданной точки (центра сферы).
Полуправильные многогранники — в общем случае это различные выпуклые многогранники, которые, не являясь правильными, имеют некоторые их признаки, например: все грани равны, или все грани являются правильными многоугольниками, или имеются определённые пространственные симметрии. Определение может варьироваться и включать различные типы многогранников, но в первую очередь сюда относятся архимедовы тела.
Подробнее: Полуправильный многогранник
Усечённый кубооктаэдр , усечённый кубоктаэдр — полуправильный многогранник (архимедово тело) с 12 квадратными гранями, 8 гранями в виде правильного шестиугольника, 6 гранями в виде правильного восьмиугольника, 48 вершинами и 72 рёбрами. Поскольку каждая из граней многогранника имеет центральную симметрию (что эквивалентно повороту на 180°), усечённый кубооктаэдр является зоноэдром.
Правильный (или равносторонний) треугольник — это правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.
Вписанный четырёхугольник — это четырёхугольник, вершины которого лежат на одной окружности. Эта окружность называется описанной. Обычно предполагается, что четырёхугольник выпуклый, но бывают и самопересекающиеся вписанные четырёхугольники. Формулы и свойства, данные ниже, верны только для выпуклых четырёхугольников.
Символ Шлефли — комбинаторная характеристика правильного многогранника, применяется для описания правильных многогранников во всех размерностях. Назван в честь швейцарского математика Людвига Шлефли, который внёс значительный вклад в геометрию и другие области математики.
В геометрии n-угольный
осоэдр — это такая мозаика из двуугольников на сферической поверхности, что каждый такой двуугольник имеет две общие вершины (противоположные точки сферы) с другими двуугольниками.
То́чка — абстрактный объект в пространстве, не имеющий никаких измеримых характеристик (нульмерный объект). Точка является одним из фундаментальных понятий в математике.
Ло́маная , ломаная линия — геометрическая фигура, состоящая из отрезков, последовательно соединённых своими концами.
В евклидовой геометрии описанный четырёхугольник — это выпуклый четырёхугольник, стороны которого являются касательными к одной окружности внутри четырёхугольника. Эта окружность называется вписанной в четырёхугольник. Описанные четырёхугольники являются частным случаем описанных многоугольников.
Полимино , или полиомино (англ. polyomino) — плоские геометрические фигуры, образованные путём соединения нескольких одноклеточных квадратов по их сторонам. Это полиформы, сегменты которых являются квадратами.
Отражение , зеркальное отражение или зеркальная симметрия — движение евклидова пространства, множество неподвижных точек которого является гиперплоскостью (в случае трехмерного пространства — просто плоскостью).
Упоминания в литературе (продолжение)
Теорема Пифагора (x² + y² = z²), сформулированная примерно пятьсот лет до нашей эры, стала для нее настоящим откровением. Она вдруг поняла смысл того, что запомнила в старших классах школы во время одного из редких уроков, которые не прогуляла. «В прямоугольном
треугольнике квадрат гипотенузы равен сумме квадратов катетов». Еще ее восхитило открытие Евклида, сделанное примерно за триста лет до нашей эры и относящееся к совершенным числам. Совершенными называются натуральные числа, равные сумме всех своих делителей. Открытие Евклида состояло в том, что произведение двух чисел, одно из которых есть степень двойки, а второе представляет собой разность следующей степени двойки и единицы, будет совершенным, если второй множитель – простое число. Лисбет убедилась в справедливости теоремы Евклида на примерах:
Геометрические фракталы (иногда их называют линейными) – самые очевидные, в прямом смысле слова: их самоподобие визуально легко различимо. Таковы, например,
треугольник Сер-пинского или снежинка Коха. Геометрические фракталы получают с помощью ломаной линии или двух-, трехмерной фигуры, называемой генератором. За один шаг алгоритма часть исходной линии/фигуры (инициатора) заменяется на линию/фигуру (генератор) в соответствующем масштабе. В результате многократного (в пределе – бесконечного) повторения этой процедуры получается геометрический фрактал.
Вычислим длину каждой дуги. Так как точки А и В лежат на широте 60°, то радиусы ОА и ОВ составляют с ОС (осью земного шара) угол в 30°. В прямоугольном
треугольнике АСО катет АС (=r), лежащий против угла в 30°, равен половине гипотенузы АО;
Рис. 18. Геометрические построения, в основе которых лежат гармоничные пропорции: а – «золотое сечение»; б – квадрат; в – равносторонний
треугольник ; г – пятиугольник; д – прямоугольники, построенные на соответствующих гармоничных отрезках
Обратите внимание на то, что
треугольники выбирают так, что одна из сторон должна быть параллельна одной из диагоналей матрицы, тогда вершины треугольников укажут нужные тройки чисел, включая тройки чисел диагоналей.
Только что мы последовали путем гауссовой логики, чтобы получить сумму первой сотни простых чисел. Но что, если нам нужна сумма 17 из них? Или тысячи? Миллиона? Логика Гаусса позволяет подсчитывать сумму первых n чисел, где n – любое нужное вам количество! Некоторым людям легче разобраться с математическими абстракциями, если они могут их визуализировать. К примеру, числа 1, 3, 6, 10 и 15 иногда называют треугольными, потому что, заменив их соответствующим количеством кружков, можно легко сложить
треугольники , вроде того, что изображен чуть ниже (конечно, один кружок треугольником можно назвать с очень большой натяжкой, но число 1, несмотря на это, все же считается треугольным). Согласно определению, треугольное число n равняется 1 + 2 + 3 +… + n.
Проведя прямую OD, соединяющую центр O земного шара с серединой D хорды AB, получаем прямоугольный
треугольник ODA, где угол D – прямой:
От линейных узоров обратимся к таким симметричным орнаментам, которыми можно целиком покрыть какую-либо поверхность, т. е. орнаментам, потенциально бесконечным в любом возможном направлении. Такие орнаменты образуют равномерную сеть, в которой переносы могут совершаться не только вдоль любой из осей, но и в других направлениях. Ячейки такой сети могут быть квадратами, ромбами, прямоугольниками, параллелограммами или равносторонними
треугольниками . В искусстве орнамента часто используется прием заполнения плоскости одинаковыми прямолинейными фигурами, придающими поверхности четкую ритмическую организацию. На симметрию потенциально бесконечного орнамента влияют, как и в бордюрах, элементы симметрии повторяемого мотива.
Большой
треугольник разделен линией судьбы, и то пространство, которое образовано линиями судьбы, Меркурия и головы, называется малым треугольником (рис. 1.23).
Материал. Плата, по 10
треугольников с прямым углом (пяти цветов) и по 5 кругов (на каждого ребенка), 6 равнобедренных треугольников.
Из вершины каждого
треугольника провести вниз перпендикуляр (высоту треугольника) в центр основания. Далее, на верхней части заготовки карандашом наметить небольшой треугольник так, чтобы линия его основания проходила через центральную точку на основании больших плоских треугольников.
Особенностью создания регионов в приведенном листинге является использование дополнительных процедур для заполнения массива points координатами точек-вершин многоугольников определенного вида. Все эти процедуры принимают, помимо ссылки на сам массив points, ширину и высоту прямоугольника, в который должен быть вписан многоугольник. Описание процедуры создания
треугольника приведено в листинге 1.13.
Иногда оказывается целесообразным заменить резистивные элементы, соединенные звездой, эквивалентным
треугольником . Соответствующие формулы можно получить путем совместного решения выражений (1).
7. Прошивание дуги
треугольниками . Дугу надо разделить на равные отрезки. Каждой из точек присваивают по два порядковых номера, так как одну точку в данном случае прошивать придется дважды.
Лобачевский не просто первым создал теорию неевклидовой геометрии, но и поставил вопрос о реальной геометрии нашего мира. Какова она – плоская евклидова или же искривленная неевклидова? Он попытался практически ответить на этот вопрос, проведя ряд астрономических измерений суммы углов
треугольников , составленных из далеких звезд. Однако отсутствие разработанной методологии подобных наблюдений и их низкая точность не позволили получить какой-либо результат.