Связанные понятия
Биссектри́са (от лат. bi- «двойное», и sectio «разрезание») угла — луч, исходящий из вершины угла и делящий угол на два равных угла. Можно также определить биссектрису как геометрическое место точек внутри угла, равноудалённых от сторон этого угла.
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону (точнее, на прямую, содержащую противоположную сторону).
Середина отрезка — точка на заданном отрезке, находящаяся на равном расстоянии от обоих концов данного отрезка. Является центром масс как всего отрезка, так и его конечных точек.
Вписанный четырёхугольник — это четырёхугольник, вершины которого лежат на одной окружности. Эта окружность называется описанной. Обычно предполагается, что четырёхугольник выпуклый, но бывают и самопересекающиеся вписанные четырёхугольники. Формулы и свойства, данные ниже, верны только для выпуклых четырёхугольников.
Медиа́на треуго́льника (лат. mediāna — средняя) ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы.
В евклидовой геометрии описанный четырёхугольник — это выпуклый четырёхугольник, стороны которого являются касательными к одной окружности внутри четырёхугольника. Эта окружность называется вписанной в четырёхугольник. Описанные четырёхугольники являются частным случаем описанных многоугольников.
Вписанно-описанный четырёхугольник — это выпуклый четырёхугольник, который имеет как вписанную окружность, так и описанную окружность. Из определения следует, что вписанно-описанные четырёхугольники имеют все свойства как описанных четырёхугольников, так и вписанных четырёхугольников. Другие названия этих четырёхугольников: хордо-касающийся четырёхугольник и бицентрический четырёхугольник. Их также называют двух-окружностными четырёхугольниками.
Вписанная в треугольник окружность — окружность внутри треугольника, касающаяся всех его сторон; наибольшая окружность, которая может находиться внутри треугольника. Центр этой окружности является точкой пересечения биссектрис треугольника и называется инцентром треугольника.
В евклидовой геометрии равнобедренная трапеция — это выпуклый четырёхугольник с осью симметрии, проходящей через середины двух противоположных сторон. Этот четырёхугольник является частным случаем трапеций. В любой равнобедренной трапеции две противоположные стороны (основания) параллельны, а две другие стороны (боковые) имеют одинаковые длины (свойство, которому удовлетворяет также параллелограмм). Диагонали также имеют одинаковые длины. Углы при каждом основании равны и углы при разных основаниях...
Теорема косинусов — теорема евклидовой геометрии, обобщающая теорему Пифагора на произвольные плоские треугольники.
Четырёхугольник (греч. τετραγωνον) — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся (см. рис.). Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеется в виду только простые четырёхугольники.
Гипотенуза (греч. ὑποτείνουσα, натянутая) — самая длинная сторона прямоугольного треугольника, противоположная прямому углу. Длина гипотенузы прямоугольного треугольника может быть найдена с помощью теоремы Пифагора: квадрат длины гипотенузы равен сумме квадратов длин катетов.
Выпуклым многоугольником называется
многоугольник , все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.
Десятиуго́льник (правильный десятиугольник — декагон) — многоугольник с десятью углами и десятью сторонами.
Чевиана — это отрезок в треугольнике, соединяющий вершину треугольника с точкой на противоположной стороне. Часто рассматриваются три таких отрезка, пересекающихся в одной точке, которые совместно называются чевианами. Название «чевиана» происходит от имени итальянского инженера Джованни Чевы, доказавшего известную теорему о чевианах, которая носит его имя. Медианы, биссектрисы и высоты в остроугольном треугольнике являются специальными случаями чевиан.
Энциклопедия центров треугольника (англ. The Encyclopedia of Triangle Centers = ETC) — размещённая в сети база данных, содержащая более 6000 «центров треугольника», связанных с геометрией треугольника. Энциклопедия поддерживается Кларком Кимберлингом (Clark Kimberling), профессором математики университета Эвансвилля (штат Индиана) (University of Evansville).
В гиперболической геометрии
гиперболический треугольник является треугольником на гиперболической плоскости. Он состоит из трёх отрезков, называемых сторонами или рёбрами, и трёх точек, называемых углами или вершинами.
Пра́вильный многоуго́льник — это выпуклый многоугольник, у которого все стороны между собой равны и все углы между смежными сторонами равны.
Замечательные точки треугольника — точки, местоположение которых однозначно определяется треугольником и не зависит от того, в каком порядке берутся стороны и вершины треугольника.
Диагональ (греч. διαγώνιος; от δια- «через» + γώνια «угол») — в математике имеет геометрический смысл, а также используется при наглядном описании квадратных матриц.
В геометрии пространственный многоугольник — это многоугольник, вершины которого не компланарны. Пространственные многоугольники должны иметь по меньшей мере 4 вершины. Внутренняя поверхность таких многоугольников однозначно не определяется.
Дуга́ — одно из двух подмножеств окружности, на которые её разбивают любые две различные принадлежащие ей точки. Любые две точки A и B окружности разбивают её на две части; каждая из этих частей называется дугой.
Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя неравная им сторона — основанием. По определению, каждый правильный треугольник также является равнобедренным, но обратное утверждение неверно.
В геометрии вершина — это вид точки, в которой две кривые, две прямые либо два ребра сходятся. Из этого определения следует, что точка, в которой сходятся два луча, образуя угол, является вершиной, а также ею являются угловые точки многоугольников и многогранников.
Лемма о трезубце или теорема трилистника, или лемма Мансиона (жарг. лемма о куриной лапке) — теорема в геометрии треугольника.
Теоре́ма си́нусов — теорема, устанавливающая зависимость между длинами сторон треугольника и величиной противолежащих им углов.
Полиамонд (англ. polyiamond) или треуго́льный мо́нстр (англ. triangular animal) — геометрическая фигура в виде многоугольника, составленного из нескольких одинаковых равносторонних треугольников, примыкающих друг к другу по рёбрам. Полиамонды можно рассматривать как конечные подмножества треугольного паркета со связной внутренностью.
Геометри́ческое ме́сто то́чек (ГМТ) — фигура речи в математике, употребляемая для определения геометрической фигуры как множества точек, обладающих некоторым свойством.
Звёздчатый многоугольник — многоугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного многоугольника. Стороны звёздчатого многоугольника могут пересекаться между собой. Существует множество звёздчатых многоугольников или звёзд, среди них пентаграмма, гексаграмма, две гептаграммы, октограмма, декаграмма, додекаграмма. Звёздчатые многоугольники можно получить, продолжая одновременно все стороны правильного многоугольника после их пересечения в его вершинах до их...
Внеописанный четырёхугольник — это выпуклый четырёхугольник, продолжения всех четырёх сторон которого являются касательными к окружности (вне четырёхугольника). Окружность называется вневписанной. Центр вневписанной окружности лежит на пересечении шести биссектрис. Это биссектрисы двух внутренних углов противоположных углов четырёхугольника, биссектрисы внешних углов двух других вершин, и биссектрисы внешних углов в точках пересечения продолжений противоположных сторон (смотрите рисунок справа, указанные...
Площадь плоской фигуры — аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное множество единичных квадратов, площадь равна числу квадратов.
Дельто́ид (от др.-греч. δελτοειδής — «дельтовидный», напоминающий заглавную букву дельта) — четырёхугольник, в котором есть две пары смежных равных сторон.
Ребро в геометрии — отрезок, соединяющий две вершины многоугольника или многогранника (в размерностях 3 и выше). В многоугольниках ребро является отрезком, лежащим на границе и чаще называется стороной многоугольника. В трёхмерных многогранниках и в многогранниках большей размерности ребро — это отрезок, общий для двух граней. Отрезок, соединяющий две вершины и проходящий через внутренние или внешние точки, ребром не является и называется диагональю.
Сферический треугольник — геометрическая фигура на поверхности сферы, состоящая из трёх точек и трёх дуг больших кругов, соединяющих попарно эти точки. Три больших круга на поверхности сферы, не пересекающихся в одной точке, образуют восемь сферических треугольников. Соотношения между элементами сферических треугольников изучает сферическая тригонометрия.
Треуго́льник (в евклидовом пространстве) — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью (например, для определения понятия площади).
Говорят, что два и более объектов концентричны или коаксиальны, если они имеют один и тот же центр или ось. Окружности, правильные многоугольники, правильные многогранники и сферы могут быть концентричны друг другу (имея одну и ту же центральную точку), как могут быть концентричными и цилиндры (имея общую коаксиальную ось).
Подробнее: Концентричные объекты
Пра́вильный шестнадцатияче́йник, или просто шестнадцатияче́йник — один из правильных многоячейников в четырёхмерном пространстве. Известен также под другими названиями: гексадекахор (от др.-греч. ἕξ — «шесть», δέκα — «десять» и χώρος — «место, пространство»), четырёхмерный гиперокта́эдр (поскольку является аналогом трёхмерного октаэдра), четырёхмерный кокуб (поскольку двойственен четырёхмерному гиперкубу), четырёхмерный ортоплекс.
Подробнее: Шестнадцатиячейник
Диэдр — вид многогранника, состоящего из двух многоугольных граней, имеющих общий набор рёбер. В трёхмерном евклидовом пространстве он является вырожденным, если его грани плоские, в то время как в трёхмерном сферическом пространстве диэдр с плоскими гранями может рассматриваться как линза, примером которой является фундаментальная область линзового пространства L(p,q) .
Инве́рсия (от лат. inversio «обращение») относительно окружности — преобразование евклидовой плоскости, переводящее обобщённые окружности (окружности либо прямые) в обобщённые окружности, при котором одна из окружностей поточечно переводится в себя.
Полный четырёхугольник (иногда употребляется термин полный четырёхвершинник) — это система геометрических объектов, состоящая из любых четырёх точек на плоскости, никакие три из которых не лежат на одной прямой, и шести прямых, соединяющих шесть пар точек. Конфигурация, двойственная к полному четырёхугольнику — полный четырёхсторонник — является системой из четырёх прямых, никакие три из которых не проходят через одну точку, и шести точек пересечения этих прямых. Лахлан для полного четырёхугольника...
Ло́маная , ломаная линия — геометрическая фигура, состоящая из отрезков, последовательно соединённых своими концами.
Пра́вильный двадцатичетырёхъяче́йник, или просто двадцатичетырёхъяче́йник, или икоситетрахор (от др.-греч. εἴκοσι — «двадцать», τέτταρες — «четыре» и χώρος — «место, пространство»), — один из правильных многоячейников в четырёхмерном пространстве.
Подробнее: Двадцатичетырёхъячейник
Каса́тельная пряма́я — прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.
Тетраэдр называется правильным, если все его грани — равносторонние треугольники.
Треугольник Шварца представляется тремя рациональными числами (p q r), каждое из которых задаёт угол в вершине. Значение n/d означает, что угол в вершине треугольника равен d/n развёрнутого угла. 2 означает прямоугольный треугольник. Если эти числа целые, треугольник называется треугольником Мёбиуса и он соответствует мозаике без перекрытий, а группа симметрии называется группой треугольника. На сфере имеется 3 треугольника Мёбиуса и ещё одно однопараметрическое семейство. На плоскости имеется три...
Луч (в геометрии) или полупрямая — часть прямой, состоящая из данной точки и всех точек, лежащих по одну сторону от неё. Любая точка на прямой разделяет прямую на два луча.