Связанные понятия
Теория доказательств — это раздел математической логики, представляющий доказательства в виде формальных математических объектов, осуществляя их анализ с помощью математических методов. Доказательства обычно представляются в виде индуктивно определённых структур данных, таких как списки и деревья, созданных в соответствии с аксиомами и правилами вывода формальных систем. Таким образом, теория доказательств является синтаксической, в отличие от семантической теории моделей. Вместе с теорией моделей...
Математическое доказательство — рассуждение с целью обоснования истинности какого-либо утверждения (теоремы), цепочка логических умозаключений, показывающая, что при условии истинности некоторого набора аксиом и правил вывода утверждение верно. В зависимости от контекста, может иметься в виду доказательство в рамках некоторой формальной системы (построенная по специальным правилам последовательность утверждений, записанная на формальном языке) или текст на естественном языке, по которому при необходимости...
Алгоритмическая разрешимость — свойство формальной теории обладать алгоритмом, определяющим по данной формуле, выводима она из множества аксиом данной теории или нет. Теория называется разрешимой, если такой алгоритм существует, и неразрешимой, в противном случае. Вопрос о выводимости в формальной теории является частным, но вместе с тем важнейшим случаем более общей проблемы разрешимости.
Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами.
Основания математики — математическая система, разработанная с целью обеспечить вывод математического знания из небольшого числа чётко сформулированных аксиом с помощью логических правил вывода, тем самым гарантируя надёжность математических истин. Основания математики включают в себя три компонента.
Те́зис Чёрча — Тью́ринга — это гипотеза, постулирующая эквивалентность между интуитивным понятием алгоритмической вычислимости и строго формализованными понятиями частично рекурсивной функции и функции, вычислимой на машине Тьюринга. В связи с интуитивностью исходного понятия алгоритмической вычислимости, данный тезис носит характер суждения об этом понятии и его невозможно строго доказать или опровергнуть. Перед точным определением вычислимой функции математики часто использовали неофициальный термин...
Метаматематика — раздел математической логики, изучающий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов. Термин «метаматематика» буквально означает «за пределами математики».
Аксио́мы Пеа́но — одна из систем аксиом для натуральных чисел, введённая в XIX веке итальянским математиком Джузеппе Пеано.
Гипотеза в математике — утверждение, которое на основе доступной информации представляется с высокой вероятностью верным, но для которого не удаётся получить математическое доказательство. Математическая гипотеза является открытой математической проблемой, и каждую нерешённую математическую проблему, которая является проблемой разрешимости, можно сформулировать в форме гипотезы. Однако в виде гипотезы может быть сформулирована не всякая математическая проблема. Например, конкретное решение некоторой...
Форма́льная систе́ма (форма́льная тео́рия, аксиоматическая теория, аксиоматика, дедуктивная система) — результат строгой формализации теории, предполагающей полную абстракцию от смысла слов используемого языка, причем все условия, регулирующие употребление этих слов в теории, явно высказаны посредством аксиом и правил, позволяющих вывести одну фразу из других.
Интуициони́зм — совокупность философских и математических взглядов, рассматривающих математические суждения с позиций «интуитивной убедительности». Различаются две трактовки интуиционизма: интуитивная убедительность, которая не связана с вопросом существования объектов, и наглядная умственная убедительность.
Парадокс Скулема — противоречивое рассуждение, описанное впервые норвежским математиком Туральфом Скулемом, связанное с использованием теоремы Лёвенгейма — Скулема для аксиоматической теории множеств.
Теория вычислимости , также известная как теория рекурсивных функций, — это раздел современной математики, лежащий на стыке математической логики, теории алгоритмов и информатики, возникшей в результате изучения понятий вычислимости и невычислимости. Изначально теория была посвящена вычислимым и невычислимым функциям и сравнению различных моделей вычислений. Сейчас поле исследования теории вычислимости расширилось — появляются новые определения понятия вычислимости и идёт слияние с математической...
Аксиома́тика Колмого́рова — общепринятая аксиоматика для математического описания теории вероятностей. Первоначальный вариант предложен Андреем Николаевичем Колмогоровым в 1929 году, окончательная версия — в 1933 году. Аксиоматика Колмогорова позволила придать теории вероятностей стиль, принятый в современной математике.
Экспериментальная математика — область математики, отличающаяся использованием различных приёмов, в т. ч. приёмов подстановки, перемещения, доказательств от обратного, в т.ч. с использованием электронно-вычислительных инструментов для проверки, подтверждения старых и получения новых фактов (теорем) в математике. Все результаты, полученные в экспериментальной математике, являются строго доказанными утверждениями математики. Строго говоря, любые доказательства, выкладки, вычисления и т.д. являются...
Алгоритм Тарского — универсальный алгоритм, позволяющий установить истинность или ложность любой замкнутой арифметической формулы первого порядка с переменными для вещественных чисел.
Комбина́торная ло́гика — направление математической логики, занимающееся фундаментальными (то есть не нуждающимися в объяснении и не анализируемыми) понятиями и методами формальных логических систем или исчислений. В дискретной математике комбинаторная логика тесно связана с лямбда-исчислением, так как описывает вычислительные процессы.
Незави́симость систе́мы аксио́м ― свойство системы аксиом данной аксиоматической теории, состоящее в том, что каждая аксиома является независимой, то есть не является логическим следствием из множества остальных аксиом этой теории. Система аксиом, обладающая этим свойством, называется независимой.
Теорема Цермело — теорема теории множеств, утверждающая, что на всяком множестве можно ввести такое отношение порядка, что множество будет вполне упорядоченным.
Тео́рия алгори́тмов — наука, находящаяся на стыке математики и информатики, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач, асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п. Вместе с математической логикой теория алгоритмов...
Матема́тика (др.-греч. μᾰθημᾰτικά < μάθημα «изучение; наука») — наука об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание той или иной математической теории. Исторически сложилась на основе операций подсчёта, измерения и описания формы объектов. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке...
Конти́нуум-гипо́теза (проблема континуума, первая проблема Гильберта) — выдвинутое в 1877 году Георгом Кантором предположение о том, что любое бесконечное подмножество континуума является либо счётным, либо континуальным. Другими словами, гипотеза предполагает, что мощность континуума — наименьшая, превосходящая мощность счётного множества, и «промежуточных» мощностей между счетным множеством и континуумом нет, в частности, это предположение означает, что для любого бесконечного множества действительных...
Математическая индукция — метод математического доказательства, который используется, чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 — база (базис) индукции, а затем доказывается, что если верно утверждение с номером n, то верно и следующее утверждение с номером n + 1 — шаг индукции, или индукционный переход.
Математи́ческая ло́гика (теоретическая логика, символическая логика) — раздел математики, изучающий математические обозначения, формальные системы, доказуемость математических суждений, природу математического доказательства в целом, вычислимость и прочие аспекты оснований математики. В более широком смысле рассматривается как математизированная ветвь формальной логики — «логика по предмету, математика по методу», «логика, развиваемая с помощью математических методов».
Логици́зм — одно из основных направлений обоснования математики и философии математики, ставящее целью сведе́ние исходных математических понятий к понятиям логики. Двумя другими основными направлениями являются интуиционизм и формализм.
Логика первого порядка , называемая иногда логикой или исчислением предикатов — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высших порядков.
Оккамово обучение в теории вычислительного обучения является моделью алгоритмического обучения, где целью обучения является получение сжатого представления имеющихся тренировочных данных. Метод тесно связан с почти корректным обучением (ПК обучение, англ. Probably Approximately Correct learning, PAC learning), где учитель оценивает прогнозирующую способность тестового набора.
Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.).
Формализм — один из подходов к философии математики, пытающийся свести проблему оснований математики к изучению формальных систем. Наряду с логицизмом и интуиционизмом считался в XX веке одним из направлений фундаментализма в философии математики.
Четырнадцатая проблема Гильберта — четырнадцатая из проблем, поставленных Давидом Гильбертом в его знаменитом докладе на II Международном Конгрессе математиков в Париже в 1900 году. Она посвящена вопросу конечной порождённости возникающих при определённых конструкциях колец. Исходная постановка Гильберта была мотивирована работой Маурера, в которой утверждалась конечная порождённость алгебры инвариантов линейного действия алгебраической группы на векторном пространстве; собственно же вопрос Гильберта...
Теория моделей — раздел математической логики, который занимается изучением связи между формальными языками и их интерпретациями, или моделями. Название теория моделей было впервые предложено Тарским в 1954 году. Основное развитие теория моделей получила в работах Тарского, Мальцева и Робинсона.
Метатеория — теория, анализирующая методы и свойства другой теории, так называемой предметной или объектной теории.
Красота математики — восприятие математики как объекта эстетического наслаждения, схожего с музыкой и поэзией.
Аксиома детерминированности — аксиома теории множеств, обычно обозначаемая AD. Эту аксиому предложили в 1962 году польские математики Ян Мычельский и Гуго Штейнгауз в качестве замены для аксиомы выбора (введённой в 1904 году, обозначается AC). Причиной поиска альтернативы аксиоме выбора стали необычные следствия из этой аксиомы, которые вызывали и продолжают вызывать критику со стороны части математиков. Например, в случае применения аксиомы выбора возникают парадоксальные конструкции вроде «парадокса...
Индуктивное логическое программирование (Inductive Logic Programming, ILP) — раздел машинного обучения, который использует логическое программирование как форму представления примеров, фоновых знаний и гипотез. Получив описания уже известных фоновых знаний и набор примеров, представленных как логическая база фактов, система ILP может породить логическую программу в форме гипотез, объясняющую все положительные примеры и ни одного отрицательного.
Теоре́ма (др.-греч. θεώρημα «доказательство, вид; взгляд; представление, положение») — утверждение, выводимое в рамках рассматриваемой теории из множества аксиом посредством использования конечного множества правил вывода.
Конструктивная математика — абстрактная наука о конструктивных процессах, человеческой способности осуществлять их, и об их результатах — конструктивных объектах.
Тео́рия мно́жеств — раздел математики, в котором изучаются общие свойства множеств — совокупностей элементов произвольной природы, обладающих каким-либо общим свойством. Создана во второй половине XIX века Георгом Кантором при значительном участии Рихарда Дедекинда, привнесла в математику новое понимание природы бесконечности, была обнаружена глубокая связь теории с формальной логикой, однако уже в конце XIX — начале XX века теория столкнулась со значительными сложностями в виде возникающих парадоксов...
Неконструктивное доказательство (неэффективное доказательство) — класс математических доказательств, доказывающих лишь существование в заданном (как правило, бесконечном) множестве элемента, удовлетворяющего заданным свойствам, но не дающее никакой информации о других свойствах элемента, то есть не позволяющие ни предъявить его, ни приблизительно описать. Доказательства, которые доказывают существование элемента, предъявляя способ получения этого элемента, называются конструктивными.
Темпоральная логика (англ. temporal (от лат. tempus) logic) — это логика, в высказываниях которой учитывается временной аспект. Используется для описания последовательностей явлений и их взаимосвязи по временной шкале.
Измери́мые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами множеств, в частности измеримыми пространствами.
Подробнее: Измеримая функция
Задачи тысячелетия — семь открытых математических проблем, определённых Математическим институтом Клэя в 2000 году как «важные классические задачи, решение которых не найдено вот уже в течение многих лет», за решение каждой из которых обещано вознаграждение в 1 млн долларов США. Существует историческая параллель между задачами тысячелетия и списком проблем Гильберта 1900 года, оказавшим существенное влияние на развитие математики в XX веке; из 23 проблем Гильберта большинство уже решены, и только...
Комбинато́рика (комбинаторный анализ) — раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисления элементов) и отношения на них (например, частичного порядка). Комбинаторика связана с другими областями математики — алгеброй, геометрией, теорией вероятностей и применяется в различных областях знаний (например, в генетике, информатике, статистической физике).
Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
Метало́гика — изучение метатеории логики. В то время, как логика представляет собой исследование способов применения логических систем для рассуждения, доказательств и опровержений, металогика исследует свойства самих логических систем.
Арифметика Пресбургера — это теория первого порядка, описывающая натуральные числа со сложением, но в отличие от арифметики Пеано, исключающая высказывания относительно умножения. Названа в честь польского математика Мойжеша Пресбургера, который в 1929 году предложил соответствующую систему аксиом в логике первого порядка, а также показал её разрешимость.
В математической логике, Эрбранова интерпретация — это интерпретация, в которой константам и функциональным символам присвоен очень простой смысл. Конкретнее, каждая константа интерпретируется как она сама, функциональный символ же интерпретируется как функция, которая применяется. Интерпретация также определяет предикатные символы как задающие подмножество соответствующей Эрбрановой базы, фактически задавая, каким образом вычисляется значение замкнутых формул. Это позволяет интерпретировать символы...
Основания геометрии — область математики, изучающая аксиоматические системы евклидовой геометрии, а также различных неевклидовых геометрий.