Связанные понятия
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Логика разделения , сепарационная логика (англ. separation logic) в информатике — формальная система, предназначенная для верификации программ, содержащих изменяемые структуры данных и указатели, расширение логики Хоара. Разработана Джоном Рейнольдсом (англ. John C. Reynolds), Питером О’Хирном (англ. Peter O'Hearn), Самином Иштиаком (англ. Samin Ishtiaq) и Хонсёком Яном (англ. Hongseok Yang) на основе работ Рода Бёрстола (англ. Rod Burstall). Язык утверждений логики разделения является специальным...
Оккамово обучение в теории вычислительного обучения является моделью алгоритмического обучения, где целью обучения является получение сжатого представления имеющихся тренировочных данных. Метод тесно связан с почти корректным обучением (ПК обучение, англ. Probably Approximately Correct learning, PAC learning), где учитель оценивает прогнозирующую способность тестового набора.
Принцип минимальной длины описания (англ. minimum description length, MDL) — это формализация бритвы Оккама, в которой лучшая гипотеза (модель и её параметры) для данного набора данных это та, которая ведёт к лучшему сжиманию даных. Принцип MDL предложил Йорма Риссанен в 1978. Принцип является важной концепцией в теории информации и теории вычислительного обучения.
Эпистемическая теория игр (англ. epistemic game theory), иначе называемая интерактивной эпистемологией (англ. interactive epistemology), формализует допущения о верах и знаниях игроков относительно рациональности, поведения оппонентов, их собственных знаний и вер. Эти допущения лежат в основе различных концепций решения — правил, в соответствии с которыми прогнозируется поведение игроков и, следовательно, исход игры. Допущения часто описаны на интуитивном уровне, и эпистемический анализ необходим...
Коэффициент Байеса — это байесовская альтернатива проверке статистических гипотез. Байесовское сравнение моделей — это метод выбора моделей на основе коэффициентов Байеса. Обсуждаемые модели являются статистическими моделями. Целью коэффициента Байеса является количественное выражение поддержки модели по сравнению с другой моделью, независимо от того, верны модели или нет. Техническое определение понятия «поддержка» в контексте байесовского вывода дано ниже.
Термин
рекурсивная функция в теории вычислимости используется для обозначения трёх классов функций...
Структурная индукция — конструктивный метод математического доказательства, обобщающий математическую индукцию (применяемую над натуральным рядом) на произвольные рекурсивно определённые частично упорядоченные совокупности. Структурная рекурсия — реализация структурной индукции в форме определения, процедуры доказательства или программы, обеспечивающая индукционный переход над частично упорядоченной совокупностью.
Логика второго порядка в математической логике — формальная система, расширяющая логику первого порядка возможностью квантификации общности и существования не только над переменными, но и над предикатами. Логика второго порядка несводима к логике первого порядка. В свою очередь, она расширяется логикой высших порядков и теорией типов.
Логика Хоара (англ. Hoare logic, также Floyd—Hoare logic, или Hoare rules) — формальная система с набором логических правил, предназначенных для доказательства корректности компьютерных программ. Была предложена в 1969 году английским учёным в области информатики и математической логики Хоаром, позже развита самим Хоаром и другими исследователями. Первоначальная идея была предложена в работе Флойда, который опубликовал похожую систему в применении к блок-схемам (англ. flowchart).
Индукция грамматики (или грамматический вывод) — это процесс в машинном обучении для обучения формальной грамматике (обычно в виде набора правил вывода или порождающих правил или, альтернативно, как конечный автомат или автомат другого вида) из набора наблюдений, то есть построение модели, которая описывает наблюдаемые объекты. Более обще, грамматический вывод — это такая ветвь машинного обучения, в которой пространство примеров состоит из дискретных комбинаторных объектов, таких как строки, деревья...
Описательные ло́гики или дескрипцио́нные ло́гики(сокр. ДЛ, англ. description logics, иногда используется неточный перевод: дескрипти́вные логики) — семейство языков представления знаний, позволяющих описывать понятия предметной области в недвусмысленном, формализованном виде. Они сочетают в себе, с одной стороны, богатые выразительные возможности, а с другой — хорошие вычислительные свойства, такие как разрешимость и относительно невысокая вычислительная сложность основных логических проблем, что...
Подробнее: Дескрипционная логика
Метало́гика — изучение метатеории логики. В то время, как логика представляет собой исследование способов применения логических систем для рассуждения, доказательств и опровержений, металогика исследует свойства самих логических систем.
Тематическое моделирование — способ построения модели коллекции текстовых документов, которая определяет, к каким темам относится каждый из документов.
В обучении машин вероятностный классификатор — это классификатор, который способен предсказывать, если на входе заданы наблюдения, распределение вероятностей над множеством классов, а не только вывод наиболее подходящего класса, к которому наблюдения принадлежат. Вероятностные классификаторы обеспечивают классификацию, которая может быть полезна сама по себе или когда классификаторы собираются в ансамбли.
Логика Бэрроуза — Абади — Нидхэма (англ. Burrows-Abadi-Needham logic) или BAN-логика (англ. BAN logic) — это формальная логическая модель для анализа знания и доверия, широко используемая при анализе протоколов аутентификации.
Семплирование по Гиббсу — алгоритм для генерации выборки совместного распределения множества случайных величин. Он используется для оценки совместного распределения и для вычисления интегралов методом Монте-Карло. Этот алгоритм является частным случаем алгоритма Метрополиса-Гастингса и назван в честь физика Джозайи Гиббса.
Многозна́чная ло́гика — тип формальной логики, в которой допускается более двух истинностных значений для высказываний. Первую систему многозначной логики предложил польский философ Ян Лукасевич в 1920 году. В настоящее время существует очень много других систем многозначной логики, которые в свою очередь могут быть сгруппированы по классам. Важнейшими из таких классов являются частичные логики и нечёткие логики.
Отображение онтологий (англ. ontology alignment или ontology matching) — это процесс установления соответствий между понятиями (концептами) нескольких онтологий. Множество таких соответствий и называется «отображением». Термин имеет разное значение в компьютерной, когнитивной областях и философии.
Переписывание — широкий спектр техник, методов и теоретических результатов, связанных с процедурами последовательной замены частей формул или термов формального языка по заданной схеме — системе переписывающих правил.
Байесовская вероятность — это интерпретация понятия вероятности, используемая в байесовской теории. Вероятность определяется как степень уверенности в истинности суждения. Для определения степени уверенности в истинности суждения при получении новой информации в байесовской теории используется теорема Байеса.
Темпоральная логика (англ. temporal (от лат. tempus) logic) — это логика, в высказываниях которой учитывается временной аспект. Используется для описания последовательностей явлений и их взаимосвязи по временной шкале.
Строковое ядро — это ядерная функция, определённая на строках, т.е. конечных последовательностях символов, которые не обязательно имеют одну и ту же длину. Строковые ядра можно интуитивно понимать как функции, измеряющие похожесть пар строк — чем больше похожи две строки a и b, тем больше значение строкового ядра K(a, b).
ДСМ-метод — метод автоматического порождения гипотез. Формализует схему правдоподобного и достоверного вывода, называемую ДСМ-рассуждением.
Ра́венство (отношение равенства) в математике — бинарное отношение, наиболее логически сильная разновидность отношений эквивалентности.
Логическая вероятность — логическое отношение между двумя предложениями, степень подтверждения гипотезы H свидетельством E.
Семантическая информация — смысловой аспект информации, отражающий отношение между формой сообщения и его смысловым содержанием.
Дистрибути́вная сема́нтика — это область лингвистики, которая занимается вычислением степени семантической близости между лингвистическими единицами на основании их распределения (дистрибуции) в больших массивах лингвистических данных (текстовых корпусах).
Математическая абстракция — абстракция в математике, мысленное отвлечение. Типы абстрагирования, применяемых в математике: "чистое" отвлечение, идеализация и их различные вариации.
Апостерио́рная вероя́тность — условная вероятность случайного события при условии того, что известны апостериорные данные, т.е. полученные после опыта.
Алгоритм Баума — Велша используется в информатике и статистике для нахождения неизвестных параметров скрытой марковской модели (HMM). Он использует алгоритм прямого-обратного хода и является частным случаем обобщённого EM-алгоритма.
Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных...
Качественная, дискретная, или категорийная переменная — это переменная, которая может принимать одно из ограниченного и, обычно, фиксированного числа возможных значений, назначая каждую единицу наблюдения определённой группе или номинальной категории на основе некоторого качественного свойства. В информатике и некоторых других ветвях математики качественные переменные называются перечислениями или перечисляемыми типами. Обычно (хотя не в этой статье), каждое из возможных значений качественной переменной...
Вероятностная логика — логика, в которой высказываниям приписываются не исключительно значения истины и лжи как в двузначной логике, а непрерывная шкала значений истинности от 0 до 1, так, что ноль соответствует невозможному событию, единица — практически достоверному. Значения истинности в вероятностной логике называются вероятностями истинности высказываний, степенями правдоподобия или подтверждения.
Алгоритмическая разрешимость — свойство формальной теории обладать алгоритмом, определяющим по данной формуле, выводима она из множества аксиом данной теории или нет. Теория называется разрешимой, если такой алгоритм существует, и неразрешимой, в противном случае. Вопрос о выводимости в формальной теории является частным, но вместе с тем важнейшим случаем более общей проблемы разрешимости.
Сравне́ние в программировании — общее название ряда операций над па́рами значений одного типа, реализующих математические отношения равенства и порядка. В языках высокого уровня такие операции, чаще всего, возвращают булево значение («истина» или «ложь»).
Классическая логика — термин, используемый в математической логике по отношению к той или иной логической системе, для указания того, что для данной логики справедливы все законы (классического) исчисления высказываний, в том числе закон исключения третьего.
Человеческая
память ассоциативна, то есть некоторое воспоминание может порождать большую связанную с ним область. Один предмет напоминает нам о другом, а этот другой о третьем. Если позволить нашим мыслям, они будут перемещаться от предмета к предмету по цепочке умственных ассоциаций. Например, несколько музыкальных тактов могут вызвать целую гамму чувственных воспоминаний, включая пейзажи, звуки и запахи. Напротив, обычная компьютерная память является локально адресуемой, предъявляется адрес и извлекается...
Двоичная, бинарная или дихотомическая классификация — это задача классификации элементов заданного множества в две группы (предсказание, какой из групп принадлежит каждый элемент множества) на основе правила классификации. Контекст, в котором требуется решение, имеет ли объект некоторое качественное свойство, некоторые специфичные характеристики или некоторую типичную двоичную классификацию, включает...
В логике логи́ческими опера́циями называют действия, вследствие которых порождаются новые понятия, с использованием уже существующих. В более узком смысле, понятие логической операции используется в математической логике и программировании.
Подробнее: Логическая операция
Основная теорема о рекуррентных соотношениях (англ. Master theorem) используется в анализе алгоритмов для получения асимптотической оценки рекурсивных соотношений (рекуррентных уравнений), часто возникающих при анализе алгоритмов типа «разделяй и властвуй» (divide and conquer), например, при оценке времени их выполнения. Теорема была популяризована в книге Алгоритмы: построение и анализ (Томас Кормен, Чарльз Лейзерстон, Рональд Ривест, Клиффорд Штайн), в которой она была введена и доказана.
В математической статистике
семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Интервальная арифметика — математическая структура, которая для вещественных интервалов определяет операции, аналогичные обычным арифметическим. Эту область математики называют также интервальным анализом или интервальными вычислениями. Данная математическая модель удобна для исследования различных прикладных объектов...
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов (Пирсон, 1894 г.). Идея метода заключается в замене истинных соотношений выборочными аналогами.
В обучении машин и распознавании образов признак — это индивидуальное измеримое свойство или характеристика наблюдаемого явления. Выбор информативных, отличительных и независимых признаков является критическим шагом для эффективных алгоритмов в распознавании образов, классификации и регрессии. Признаки обычно являются числовыми, но структурные признаки, такие как строки и графы, используются в синтаксическом распознавании образов.
Подробнее: Признак (обучение машин)
Выбор модели — это задача выбора статистической модели из набора моделей-кандидатов по имеющимся данным. В простейшем случае рассматривается существующий набор данных. Однако задача может вовлекать планирование экспериментов, так что сбор данных связан с задачей выбора модели. Если заданы кандидаты в модели с одинаковой силой предсказания или объяснения, наиболее простая модель скорее всего будет лучшим выбором (бритва Оккама).