Связанные понятия
Зацепление Хопфа — простейшее нетривиальное зацепление с двумя и более компонентами , состоит из двух окружностей, зацеплённых однократно и названо по имени Хайнца Хопфа.
Узел в математике — вложение окружности (одномерной сферы) в трёхмерное евклидово пространство, рассматриваемое с точностью до изотопии. Основной предмет изучения теории узлов. Два узла топологически эквивалентны, если один из них можно продеформировать в другой, причём в процессе деформации не должно возникать самопересечений.
Скейн-соотношение (или соотношение типа Конвея) часто используют, чтобы простым способом определить многочлен узла. Неформально говоря, скейн-соотношение задаёт линейную связь значений многочлена узла на трёх зацеплениях, которые отличаются друг от друга лишь в малой области. Для некоторых многочленов, таких как полиномы Конвея, Александера и Джонса, подходящего скейн-соотношения достаточно, чтобы вычислить многочлен рекурсивно. Для других, таких как полином HOMFLY, требуются более сложные алгоритмы...
Нотация Конвея — это способ описания узлов, делающий многие свойства узлов очевидными. Нотация показывает строения узла, строя его с помощью некоторых операций над плетениями.
Исчисление Кёрби в геометрической топологии, названное именем Робиона Кёрби,— это метод модификации оснащённых зацеплений на трёхмерной сфере с помощью конечного числа движений Кёрби. Используя четырёхмерную теорию Серфа, Кёрби доказал, что если M и N являются трёхмерными многообразиями, полученными хирургией Дена (Хирургия Дена) из оснащённых зацеплений L и J соответственно, то они гомеоморфны тогда и только тогда, когда L и J связаны последовательностью движений Кёрби. Согласно теореме Ликериша...
Число закрученности инвариантно относительно движений Рейдемейстера II и III типов. Напротив, движение Рейдемейстера I типа увеличивает или уменьшает число закрученности на 1, поэтому оно не является инвариантом изотопии узла — а только функцией от диаграммы.
В математической теории узлов, движением (преобразованием) Рейдемейстера называют одно из трёх...
Подробнее: Движение Рейдемейстера
В теории узлов брунново зацепление — это нетривиальное зацепление, которое распадается при удалении любой компоненты. Другими словами, разрезание любого (топологического) кольца расцепляет все остальные кольца (стало быть, никакие два из колец не сцеплены, как в зацеплении Хопфа).
В теории узлов
мутация — это операция над узлом, которая может привести к другому узлу.
Сателлитный узел — конструкция позволяющая построить новый узел из двух узлов с определёнными дополнительными структурами.
В теории узлов
восьмёрка (четырёхкратный узел или узел Листинга) — это единственный узел с числом пересечений четыре. Это наименьшее возможное число пересечений, за исключением тривиального узла и трилистника. Восьмёрка является простым узлом.
Упругая карта служит для нелинейного сокращения размерности данных. В многомерном пространстве данных располагается поверхность, которая приближает имеющиеся точки данных и при этом является, по возможности, не слишком изогнутой. Данные проецируются на эту поверхность и потом могут отображаться на ней, как на карте. Её можно представлять себе как упругую пластину, погруженную в пространство данных и прикрепленную к точкам данных пружинками. Служит обобщением метода главных компонент (в котором вместо...
Простая поверхность — поверхность, которую можно представить как кусок плоскости, подвергнутый непрерывным деформациям (растяжениям, сжатиям и изгибаниям). Более точно, простой поверхностью называется образ гомеоморфного отображения (то есть взаимно однозначного и взаимно непрерывного отображения) внутренности единичного квадрата. Этому определению можно дать аналитическое выражение.
Суперквадрики — семейство геометрических поверхностей, определяемых уравнением эллипсоида и других поверхностей второго порядка, где показатели степени 2 заменены произвольным числом. Их можно считать трёхмерными аналогами кривых Ламе (суперэллипсов).
В математике конечное правило подразделения — это рекурсивный способ деления многоугольника и других двумерных фигур на всё меньшие и меньшие части. Правила подразделения в этом смысле является обобщением фракталов. Вместо повторения одного и того же узора снова и снова здесь имеются небольшие изменения на каждом шаге, что позволяет получить более богатые структуры, сохраняя при этом поддержку элегантного стиля фракталов . Правила подразделения используются в архитектуре, биологии и информатике...
Ориента́ция , в классическом случае — выбор одного класса систем координат, связанных между собой «положительно» в некотором определённом смысле.
Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности (например, бутылка Клейна), которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.
Конфигурация прямых (или разбиение плоскости прямыми) — это разбиение плоскости, образованное набором прямых.
Пучок — структура, используемая для установления отношений между локальными и глобальными данными.
Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических...
Рыба Виллертона — это необъяснённое отношение между двумя первыми инвариантами конечного типа узла. Этими инвариантами являются c2, коэффициент при квадратном члене многочлена Александера, и j3, инвариант третьего порядка, полученный из многочлена Джонса.
Многочлен Александера — это инвариант узла, который сопоставляет многочлен с целыми коэффициентами узлу любого типа. Джеймс Александер обнаружил его, первый многочлен узла, в 1923. В 1969 Джон Конвей представил версию этого многочлена, ныне носящую название многочлен Александера — Конвея. Этот многочлен можно вычислить с помощью скейн-соотношения, хотя важность этого не была осознана до открытия полинома Джонса в 1984. Вскоре после доработки Конвеем многочлена Александера стало понятно, что похожее...
Как и для криволинейных интегралов, существуют два рода поверхностных интегралов.
Подробнее: Поверхностные интегралы
Нормальная форма Чибрарио — нормальная форма дифференциального уравнения, не разрешённого относительно производной, в окрестности простейшей особой точки. Название предложено В. И. Арнольдом в честь итальянского математика Марии Чибрарио, установившей эту нормальную форму для одного класса уравнений.
Диакоптика , или метод Крона (англ. diakoptics, греческий dia-через, усиливает слово, стоящее за ним и может интерпретировано как «система» + kopto-разрыв) — один из методов расчленения при исследовании сложных систем, которые могут быть представлены в виде блок-схемы или графа с использованием граф-топологического портрета системы как нового источника информацииТермин диакоптика использовал Крон в серии статей «Diakoptics — The Piecewise Solution of Large-Scale Systems», опубликованных между 7 июня...
В проективной геометрии
конфигурация на плоскости состоит из конечного множества точек и конечной конфигурации прямых, таких, что каждая точка инцидентна одному и тому же числу прямых и каждая прямая инцидентна одному и тому же числу точек.
Вложение Татта или барицентричное вложение простого вершинно 3-связного планарного графа — вложение без пересечений с рёбрами в виде отрезков с дополнительными свойствами, что внешняя грань имеет выпуклый многоугольник в качестве границы и что каждая внутренняя вершина является геометрическим центром соседей. Если внешний многоугольник фиксирован, это условие на внутренние вершины определяет их положения однозначно как решение системы линейных уравнений. Решение уравнений даёт планарное вложение...
В математике, когерентные пучки — это класс пучков, тесно связанных с геометрическими свойствами пространства-носителя. В определении когерентного пучка используется пучок колец, который хранит эту геометрическую информацию.
Подробнее: Когерентный пучок
Программа минимальных моделей — это часть бирациональной классификации алгебраических многообразий. Её цель — построение как можно более простой бирациональной модели любого комплексного проективного многообразия. Предмет основывается на классической бирациональной геометрии поверхностей, изучаемой итальянской школой и в настоящее время находящейся в активном изучении.
В теории узлов
простой узел или простое зацепление — это узел, который, в определённом смысле, неразложим. Точнее, это нетривиальный узел, который нельзя представить в виде конкатенации двух нетривиальных узлов. Об узлах, не являющихся простыми, говорят как о составных узлах или составных зацеплениях. Определить, является ли данный узел простым или нет, может оказаться сложной задачей.
Неструктурированная (или нерегулярная) сетка — часть евклидовой плоскости или евклидова пространства, разбитая на простые фигуры, такие как треугольники или тетраэдры, в неравномерной форме. Сетки данного типа могут быть использованы в анализе методом конечных элементов, когда входные данные анализа имеют неравномерную форму.
Двоичное разбиение пространства (англ. binary space partitioning) — метод рекурсивного разбиения евклидова пространства в выпуклые множества и гиперплоскости. В результате объекты получают представление в виде структуры данных, называемой BSP-деревом.
Бордизм , также бордантность — термин топологии, употребляющийся самостоятельно или в составе стандартных...
Конфигурация — это разбиение d-мерного линейного, аффинного или проективного пространства на связные открытые ячейки, порождённые конечным набором геометрических объектов. Иногда эти объекты имеют один и тот же тип, такой как гиперплоскости или сферы. Интерес к изучению конфигураций вызван успехами в вычислительной геометрии, где конфигурации были объединяющими структурами для многих задач. Успехи в изучении более сложных объектов, таких как алгебраические поверхности, отвечали нуждам приложений...
Поток — обобщение понятия подмногообразия играющее ключевую роль в геометрической теории меры.
Геометрический остов (англ. geometric spanner) или t-остовной граф, или t-остов первоначально был введён как взвешенный граф на множестве точек в качестве вершин, для которого существует t-путь между любой парой вершин для фиксированного параметра t. t-Путь определяется как путь в графе с весом, не превосходящим в t раз пространственное расстояние между конечными точками. Параметр t называется коэффициентом растяжения остова.
В релятивистской физике координатами Риндлера называется важная и полезная координатная система, представляющая часть плоского пространства-времени, также называемого пространством Минковского. Координаты Риндлера были введены Вольфгангом Риндлером для описания пространства-времени равномерно ускоренного наблюдателя.
Подробнее: Координаты Риндлера
В математике термин
матрица Картана имеет три значения. Все они названы по имени французского математика Эли Картана. Фактически, матрицы Картана в контексте алгебр Ли впервые исследовал Вильгельм Киллинг, в то время как форма Киллинга принадлежит Картану.
Решётка (англ. Grid network, иногда также mesh, например 3D-mesh) — понятие из теории организации компьютерных сетей. Это топология, в которой узлы образуют регулярную многомерную решётку. При этом каждое ребро решётки параллельно её оси и соединяет два смежных узла вдоль этой оси. Не следует путать с понятием Грид, обозначающем вычислительную систему.
Теорема об упаковке кругов (известная также как теорема Кёбе — Андреева — Тёрстона) описывает возможные варианты касания окружностей, не имеющих общих внутренних точек. Граф пересечений (иногда называемый графом касаний) упаковки кругов — это граф, вершины которого соответствуют кругам, а рёбра — точкам касания. Если упаковка кругов осуществляется на плоскости (или, что эквивалентно, на сфере), то их граф пересечений называется графом монет. Графы монет всегда связны, просты и планарны. Теорема упаковки...
В теории узлов ленточный узел — это узел, который ограничивает самопересекающийся круг только с ленточными особенностями. Интуитивно, этот вид особенности может быть образован путём совершения разреза в круге и пропусканием другой части круга через разрез. Более формально, этот тип особенности заключается в самопересечении по дуге. Прообраз этой дуги состоит из двух дуг круга, одна из которых полностью лежит внутри круга, а концы другой находятся на краю круга.
Зацепление Уайтхеда — одно из основных зацеплений в теории узлов. Введено Уайтхедом в 1934 году как часть конструкции многообразия Уайтхеда.
Схе́ма — математическая абстракция, позволяющая связать алгебраическую геометрию, коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести геометрическую интуицию и геометрические конструкции, такие как тензорные поля, расслоения и дифференциалы, в теорию колец. Исторически теория схем возникла с целью обобщения и упрощения классической алгебраической геометрии итальянской школы XIX века, занимавшейся исследованием...
Нейронные сети Кохонена — класс нейронных сетей, основным элементом которых является слой Кохонена. Слой Кохонена состоит из адаптивных линейных сумматоров («линейных формальных нейронов»). Как правило, выходные сигналы слоя Кохонена обрабатываются по правилу «Победитель получает всё»: наибольший сигнал превращается в единичный, остальные обращаются в ноль.