Связанные понятия
Недезаргова плоскость — это проективная плоскость, не удовлетворяющая теореме Дезарга, другими словами, не являющаяся дезарговой. Теорема Дезарга верна во всех проективных пространств размерности, не равной 2, то есть, для всех классических проективных геометрий над полем (или телом), но Гильберт обнаружил, что некоторые проективные плоскости не удовлетворяют теореме.
Интервальная размерность графа — это минимальная размерность, в которой заданный граф может быть представлен в виде графа пересечений гиперпрямоугольников (то есть многомерных прямоугольных параллелепипедов) с параллельными осям рёбрами. То есть должно существовать один-к-одному соответствие между вершинами графа и множеством гиперпрямоугольников, таких, что прямоугольники пересекаются тогда и только тогда, когда существует ребро, соединяющее соответствующие вершины.
Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а...
В геометрии
домино замощение области в евклидовой плоскости — это мозаика области плитками домино, образованными объединением двух единичных квадратов, соединённых по ребру. Эквивалентно это паросочетание в графе решётки, образованное помещением вершины в центр каждого квадрата области и соединением двух вершин, если два соответствующих квадрата смежны.
В геометрии правильный косой многогранник — это обобщение множества правильных многогранников, которое включает возможность непланарных граней или вершинных фигур. Коксетер рассматривал косые вершинные фигуры, которые создавали новые четырёхмерные правильные многогранники, а много позднее Бранко Грюнбаум рассматривал правильные косые грани.
Флаг в геометрии многогранников — последовательность граней (различной размерности) абстрактного многогранника, в которой каждая предыдущая грань содержится в последующей и последовательность содержит ровно по одной грани каждой размерности.
В математике константой
Чигера (также числом Чигера или изопериметрическим числом) графа называется числовая характеристика графа, отражающая, есть ли у графа «узкое место» или нет. Константа Чигера как способ измерения наличия «узкого места» представляет интерес во многих областях, например, для создания сильно связанных компьютерных сетей, для тасования карт и в топологии малых размерностей (в частности, при изучении гиперболических 3-мерных многообразий). Названа в честь математика Джефа Чигера...
Апейрогон (от др.-греч. ἄπειρος — бесконечный или безграничный и др.-греч. γωνία — угол) — обобщённый многоугольник со счётно-бесконечным числом сторон.
Растяжение правильного многомерного многогранника образует однородный политоп, но операция может быть применена к любому выпуклому политопу, как продемонстрировано для многогранников в статье «Нотация Конвея для многогранников». В случае трёхмерных многогранников растянутый многогранник имеет все грани исходного многогранника, все грани двойственного многогранника и дополнительные квадратные грани на месте исходных рёбер.
Группы
сферической симметрии также называются точечными группами в трёхмерном пространстве, однако эта статья рассматривает только конечные симметрии.
Квадратная решётка — это вид решётки в двумерном евклидовом пространстве. Решётка является двумерной версией целочисленной решётки и обозначается Z2. Решётка является одной из пяти типов двумерных решёток, классифицированных по группам симметрии, Группа симметрии решётки в обозначениях IUC — p4m, в нотации Коксетера — , а в орбифолдной нотации — *442.
Лемма о змее — это инструмент, используемый в математике, особенно в гомологической алгебре, для построения длинных точных последовательностей. Лемма о змее верна в любой абелевой категории и играет ключевую роль в гомологической алгебре и её приложениях, например в алгебраической топологии. Гомоморфизмы, построенные с её помощью, обычно называют связывающими гомоморфизмами.
Группа Григорчука — первый пример конечнопорождённой группы промежуточного роста (то есть её рост быстрее полиномиального, но медленнее экспоненциального).
Блочный клеточный автомат — класс клеточных автоматов, в которых решётка разбита на блоки, а функция перехода применяется к каждому блоку по отдельности. Блочные клеточные автоматы полезны для моделирования физических явлений, поскольку часто несложно выбрать функции перехода так, чтобы получившийся клеточный автомат был обратим и подчинялся выбранным законам сохранения.
Слабая сходимость в функциональном анализе — вид сходимости в топологических векторных пространствах.
Петля в топологическом пространстве X — это непрерывное отображение f единичного отрезка I = в X, такое что f(0) = f(1). Другими словами, это путь, начальная точка которого совпадает с конечной.
Изогона́льное сопряже́ние — геометрическое преобразование, получаемое отражением прямых, соединяющих исходные точки с вершинами заданного треугольника относительно биссектрис углов треугольника.
Нормальная форма Чибрарио — нормальная форма дифференциального уравнения, не разрешённого относительно производной, в окрестности простейшей особой точки. Название предложено В. И. Арнольдом в честь итальянского математика Марии Чибрарио, установившей эту нормальную форму для одного класса уравнений.
В теории узлов брунново зацепление — это нетривиальное зацепление, которое распадается при удалении любой компоненты. Другими словами, разрезание любого (топологического) кольца расцепляет все остальные кольца (стало быть, никакие два из колец не сцеплены, как в зацеплении Хопфа).
Срединный граф — граф, представляющий рёбра смежности внутри граней заданного планарного графа.
Сравнение топологий — это понятие, позволяющее «сравнивать» различные топологические структуры на одном и том же множестве. Множество всех топологий на фиксированном множестве образует частично упорядоченное множество относительно этого отношения.
Трубчатая окрестность подмногообразия в многообразии — это открытое множество, окружающее подмногообразие и локально устроенное подобно нормальному расслоению.
Синглетон — множество с единственным элементом. Например, множество {0} является синглетоном.
В теории чисел квадратным треугольным числом (или треугольным квадратным числом) называется число, являющееся как треугольным, так и квадратным.
Подробнее: Квадратное треугольное число
В коммутативной алгебре, дробный идеал — это обобщение понятия идеала целостного кольца, особенно полезное при изучении дедекиндовых колец. Условно говоря, дробные идеалы — это идеалы со знаменателями. В случаях, когда одновременно обсуждаются дробные и обычные идеалы, последние называют целыми идеалами.
В геометрии
гиробифастигиум или двускатный повёрнутый бикупол является 26-м многогранником Джонсона (J26). Его можно построить объединением двух треугольных призм с правильными гранями по соответствующим квадратным граням с поворотом одной призмы на 90º . Это единственное тело Джонсона, которым можно заполнить трёхмерное пространство.
Алгебраическая связность графа G — это второе из минимальных собственных значений матрицы Кирхгофа графа G. Это значение больше нуля в том и только в том случае, когда граф G является связным. Это следствие того факта, что сколько раз значение 0 появляется в качестве собственного значения матрицы Кирхгофа, из стольких компонент связности состоит граф. Величина этого значения отражает насколько хорошо связен весь граф и используется для анализа устойчивости и синхронизации сетей.
Единичный отрезок — величина, принимаемая за единицу при геометрических построениях. При изображении декартовой системы координат, единичный отрезок обычно отмечается на каждой из осей.
Связное доминирующее множество и остовное дерево с максимальной листвой являются двумя тесно связанными структурами, определёнными на неориентированном графе.
Многогранник, многоугольник или мозаика является изотоксальным или рёберно транзитивным, если его симметрии действуют транзитивно на его рёбрах. Неформально это означает, что имеется только один вид рёбер у объекта — если даны два ребра, существует параллельный перенос, вращение и/или зеркальное отражение, переводящее одно ребро в другое, не меняя область, занимаемую объектом.
Подробнее: Изотоксальная фигура
В теории графов графом единичных кругов называется граф пересечений семейства единичных кругов на евклидовой плоскости. То есть мы образуем вершину для каждого круга и соединяем две вершины ребром, если соответствующие круги пересекаются.
Подробнее: Граф единичных кругов
Область главных идеалов — это область целостности, в которой любой идеал является главным. Более общее понятие — кольцо главных идеалов, от которого не требуется целостности (однако некоторые авторы, например Бурбаки, ссылаются на кольцо главных идеалов как на целостное кольцо).
Теория кос — раздел топологии и алгебры, изучающий косы и группы кос, составленные из их классов эквивалентности.
Пра́вильный икоса́эдр (от др.-греч. εἴκοσι «двадцать»; ἕδρον «сиденье», «основание») — правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12.
Лине́йная интерполя́ция — интерполяция алгебраическим двучленом P1(x) = ax + b функции f, заданной в двух точках x0 и x1 отрезка . В случае, если заданы значения в нескольких точках, функция заменяется кусочно-линейной функцией.
Семиуго́льник , называемый иногда гептагон — многоугольник с семью углами. Семиугольником также называют всякий предмет такой формы.
Преобразование треугольник-звезда — способ эквивалентного преобразования пассивного участка линейной электрической цепи — «треугольника» (соединения трёх ветвей, которое имеет вид треугольника, сторонами которого являются ветви, а вершинами — узлы), в «звезду» (соединение трёх ветвей, которые имеют один общий узел). Эквивалентность «треугольника» и «звезды» обусловлена тем, что при одинаковых напряжениях между одноименными выводами электрической цепи токи, которые втекают в одноименные выводы, а...
Перечисление графов — категория задач перечислительной комбинаторики, в которых нужно пересчитать неориентированные или ориентированные графы определённых типов, как правило, в виде функции от числа вершин графа. Эти задачи могут быть решены либо точно (как задача алгебраического перечисления) или асимптотически.
Геометрическая алгебра — историческое построение алгебры во второй книге «Начал» Евкида, где операции определялись непосредственно для геометрических величин, а теоремы доказывались геометрическими построениями.
Как и для криволинейных интегралов, существуют два рода поверхностных интегралов.
Подробнее: Поверхностные интегралы
Универсальная тригонометрическая подстановка , в англоязычной литературе называемая в честь Карла Вейерштрасса подстановкой Вейерштрасса, применяется в интегрировании для нахождения первообразных, определённых и неопределённых интегралов от рациональных функций от тригонометрических функций. Без потери общности можно считать в данном случае такие функции рациональными функциями от синуса и косинуса. Подстановка использует тангенс половинного угла.
Метод простой итерации — один из простейших численных методов решения уравнений. Метод основан на принципе сжимающего отображения, который применительно к численным методам в общем виде также может называться методом простой итерации или методом последовательных приближений. В частности, для систем линейных алгебраических уравнений существует аналогичный метод итерации.
Направленное множество в математике — непустое множество A с заданным на нем рефлексивным транзитивным отношением ≤ (то есть предпорядком), обладающее дополнительным свойством: у любой пары элементов из A есть верхняя грань в A.
(Топологический)
индекс Хосойи , известный также как Z индекс, графа — это полное число паросочетаний на нём. Индекс Хосойи всегда больше либо равен одному, поскольку пустое множество рёбер считается как паросочетание. Эквивалентно, индекс Хосойи — это число непустых паросочетаний плюс один.
Зада́ча Не́ймана , вторая краевая задача — в дифференциальных уравнениях краевая задача с заданными граничными условиями для производной искомой функции на границе области — так называемые граничные условия второго рода. По типу области задачи Неймана можно разделить на два типа: внутренние и внешние. Названа в честь Карла Неймана.
Фо́рмула Кирхго́фа — аналитическое выражение для решения гиперболического уравнения в частных производных (т. н. «волнового уравнения») во всём трёхмерном пространстве. Методом спуска (то есть уменьшением размерности) из него можно получить решения двумерного (Формула Пуассона) и одномерного (Формула Д’Аламбера) уравнения.