Связанные понятия
Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности (например, бутылка Клейна), которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.
Как и для криволинейных интегралов, существуют два рода поверхностных интегралов.
Подробнее: Поверхностные интегралы
Нормальная форма Чибрарио — нормальная форма дифференциального уравнения, не разрешённого относительно производной, в окрестности простейшей особой точки. Название предложено В. И. Арнольдом в честь итальянского математика Марии Чибрарио, установившей эту нормальную форму для одного класса уравнений.
Пучок — структура, используемая для установления отношений между локальными и глобальными данными.
Разду́тие (называемое Тюриным сигма-процессом, а Маниным моноидальным преобразованием) — операция в алгебраической геометрии. В простейшем случае оно, грубо говоря, оно состоит в замене точки на множество всех прямых, проходящих через неё.
Поток — обобщение понятия подмногообразия играющее ключевую роль в геометрической теории меры.
Трёхме́рное простра́нство — геометрическая модель материального мира, в котором мы находимся. Это пространство называется трёхмерным, так как оно имеет три однородных измерения — длину, ширину и высоту, то есть трёхмерное пространство описывается тремя единичными ортогональными векторами.
Точка округления (круговая точка, омбилическая точка или омбилика) ― точка на гладкой регулярной поверхности в евклидовом пространстве, в которой нормальные кривизны по всем направлениям равны.
Ориента́ция , в классическом случае — выбор одного класса систем координат, связанных между собой «положительно» в некотором определённом смысле.
Седловая точка в математическом анализе — такая точка из области определения функции, которая является стационарной для данной функции, однако не является её локальным экстремумом. В такой точке, если рассматривается функция двух переменных, образованная графиком функции поверхность обычно напоминает по форме седло или горный перевал — выпуклая в одном направлении и вогнутая в другом. На карте высот седловая точка может быть в общем случае обнаружена в месте пересечения изолиний. Например, два холма...
В вычислительной геометрии известна задача об определении принадлежности точки многоугольнику. На плоскости даны многоугольник и точка. Требуется решить вопрос о принадлежности точки многоугольнику.
Подробнее: Задача о принадлежности точки многоугольнику
В релятивистской физике координатами Риндлера называется важная и полезная координатная система, представляющая часть плоского пространства-времени, также называемого пространством Минковского. Координаты Риндлера были введены Вольфгангом Риндлером для описания пространства-времени равномерно ускоренного наблюдателя.
Подробнее: Координаты Риндлера
В математике монодро́ми́ей называется явление, состоящее в преобразовании некоторого объекта при обнесении его вдоль нетривиального замкнутого пути.
Подробнее: Монодромия
Суперквадрики — семейство геометрических поверхностей, определяемых уравнением эллипсоида и других поверхностей второго порядка, где показатели степени 2 заменены произвольным числом. Их можно считать трёхмерными аналогами кривых Ламе (суперэллипсов).
Двоичное разбиение пространства (англ. binary space partitioning) — метод рекурсивного разбиения евклидова пространства в выпуклые множества и гиперплоскости. В результате объекты получают представление в виде структуры данных, называемой BSP-деревом.
Выпуклый конус в линейной алгебре — подмножество векторного пространства над упорядоченным полем, которое замкнуто относительно линейных комбинаций с положительными коэффициентами.
Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических...
Плоскость Фано — конечная проективная плоскость порядка 2, имеющая наименьшее возможное число точек и прямых (7 точек и 7 прямых), с тремя точками на каждой прямой и с тремя прямыми, проходящими через каждую точку. Названа по имени итальянского математика Джино Фано.
Отношение инцидентности — это бинарное отношение между двумя различными типами объектов. Это включает понятия, которые можно выразить такими фразами как «точка лежит на прямой» или «прямая принадлежит плоскости». Наиболее существенное отношение инцидентности — между точкой P и прямой l, которое записывается как P I l. Если P I l, пара (P, l) называется флагом. В разговорном языке существует много выражений, описывающих отношение инцидентности (например, прямая проходит через точку, точка лежит на...
Подробнее: Инцидентность (геометрия)
Недезаргова плоскость — это проективная плоскость, не удовлетворяющая теореме Дезарга, другими словами, не являющаяся дезарговой. Теорема Дезарга верна во всех проективных пространств размерности, не равной 2, то есть, для всех классических проективных геометрий над полем (или телом), но Гильберт обнаружил, что некоторые проективные плоскости не удовлетворяют теореме.
Задачи упаковки — это класс задач оптимизации в математике, в которых пытаются упаковать объекты в контейнеры. Цель упаковки — либо упаковать отдельный контейнер как можно плотнее, либо упаковать все объекты, использовав как можно меньше контейнеров. Многие из таких задач могут относиться к упаковке предметов в реальной жизни, вопросам складирования и транспортировки. Каждая задача упаковки имеет двойственную задачу о покрытии, в которой спрашивается, как много требуется некоторых предметов, чтобы...
Метод эллипсоидов — алгоритм нахождения точки, лежащей в пересечении выпуклых множеств. Разработан А.С. Немировским и доведён до алгоритмической реализации Л.Г. Хачияном в ВЦ АН СССР.
Теорема об упаковке кругов (известная также как теорема Кёбе — Андреева — Тёрстона) описывает возможные варианты касания окружностей, не имеющих общих внутренних точек. Граф пересечений (иногда называемый графом касаний) упаковки кругов — это граф, вершины которого соответствуют кругам, а рёбра — точкам касания. Если упаковка кругов осуществляется на плоскости (или, что эквивалентно, на сфере), то их граф пересечений называется графом монет. Графы монет всегда связны, просты и планарны. Теорема упаковки...
Приближение с помощью кривых — это процесс построения кривой или математической функции, которая наилучшим образом приближается к заданным точкам с возможными ограничениями на кривую . Для построения такого приближения может использоваться либо интерполяция , где требуется точное прохождение кривой через точки, либо сглаживание, когда «сглаживающая» функция проходит через точки приближённо. Связанный раздел — регрессионный анализ, который фокусируется, главным образом, на вопросах статистического...
Кривизна ́ — собирательное название ряда характеристик (скалярных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т. д.) от соответствующих «плоских» объектов (прямая, плоскость, евклидово пространство и т. д.).
Кватернионы предоставляют удобное математическое обозначение положения и вращения объектов в пространстве. В сравнении с углами Эйлера, кватернионы позволяют проще комбинировать вращения, а также избежать проблемы, связанной с невозможностью поворота вокруг оси, независимо от совершённого вращения по другим осям (на иллюстрации). В сравнении с матрицами они обладают большей вычислительной устойчивостью и могут быть более эффективными. Кватернионы нашли своё применение в компьютерной графике, робототехнике...
Трилатерация (от лат. trilaterus — трёхсторонний) — метод определения положения геодезических пунктов путём построения на местности системы смежных треугольников, в которых измеряются длины их сторон.
Пло́щадь — численная характеристика двумерной (плоской или искривлённой) геометрической фигуры, неформально говоря, показывающая размер этой фигуры. Исторически вычисление площади называлось квадратурой. Фигура, имеющая площадь, называется квадрируемой. Конкретное значение площади для простых фигур однозначно вытекает из предъявляемых к этому понятию практически важных требований (см. ниже). Фигуры с одинаковой площадью называются равновеликими.
Основное свойство проективной плоскости — «симметрия» ролей, которые играют точки и прямые в определениях и теоремах, и двойственность является формализацией этой концепции. Имеются два подхода к этой двойственности: один, использующий язык (см. «принцип двойственности» ниже), и другой, более функциональный подход. Они полностью эквивалентны и оба служат исходной точкой для аксиоматических версий геометрии. В функциональном подходе имеется соответствие между геометриями, которое называется двойственностью...
Подробнее: Двойственное преобразование
Проективная пло́скость — двумерное проективное пространство. Важным частным случаем является вещественная проективная плоскость.
Теорема Хадвигера характеризует непрерывные валюации на выпуклых телах в Евклидовом пространстве, инвариантные относительно движений.
Однородные координаты ―
система координат , используемая в проективной геометрии, подобно тому, как декартовы координаты используются в евклидовой геометрии.
Интегральное исчисление — раздел математического анализа, в котором изучаются понятия интеграла, его свойства и методы вычислений.
Простая форма — совокупность граней, выводящихся друг из друга элементами симметрии точечной группы и удовлетворяющая закону Гаюи.
Отображе́ние пе́каря — нелинейное отображение единичного квадрата на себя, которое демонстрирует хаотическое поведение.
Конфигурация прямых (или разбиение плоскости прямыми) — это разбиение плоскости, образованное набором прямых.
Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравнения — инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения. Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.
Ко́мпле́ксный ана́лиз , тео́рия фу́нкций ко́мпле́ксного переме́нного (или ко́мпле́ксной переме́нной; сокращенно — ТФКП) — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Реше́ние Ке́рра — Нью́мена — точное решение уравнений Эйнштейна, описывающее невозмущённую электрически заряженную вращающуюся чёрную дыру без космологического члена. Астрофизическая значимость решения неясна, так как предполагается, что встречающиеся в природе коллапсары не могут быть существенно электрически заряжены.
В геометрии
построение Витхоффа , или конструкция Витхоффа — это метод построения однородных многогранников или мозаик на плоскости. Метод назван по имени математика В. А. Витхоффа. Часто метод построения Витхоффа называют калейдоскопным построением.
Рациональная поверхность — это поверхность, бирационально эквивалентная проективной плоскости, или, другими словами, рациональное многообразие размерности два. Рациональные поверхности являются простейшими из примерно 10 классов поверхностей классицикации Энрикеса — Кодаиры комплексных поверхностей, и это были первые исследованные поверхности.
Особенность , или сингулярность в математике — это точка, в которой математический объект (обычно функция) не определён или имеет нерегулярное поведение (например, точка, в которой функция имеет разрыв или недифференцируема).
В математике конечное правило подразделения — это рекурсивный способ деления многоугольника и других двумерных фигур на всё меньшие и меньшие части. Правила подразделения в этом смысле является обобщением фракталов. Вместо повторения одного и того же узора снова и снова здесь имеются небольшие изменения на каждом шаге, что позволяет получить более богатые структуры, сохраняя при этом поддержку элегантного стиля фракталов . Правила подразделения используются в архитектуре, биологии и информатике...
Конечная геометрия — это любая геометрическая система, имеющая конечное количество точек. Например, евклидова геометрия не является конечной, так как евклидова прямая содержит неограниченное число точек, а точнее говоря, содержит ровно столько точек, сколько существует вещественных чисел. Конечная геометрия может иметь любое конечное число измерений.
Интеграл — одно из важнейших понятий математического анализа, которое возникает при решении задач о нахождении площади под кривой, пройденного пути при неравномерном движении, массы неоднородного тела, и тому подобных, а также в задаче о восстановлении функции по её производной (неопределённый интеграл). Упрощённо интеграл можно представить как аналог суммы для бесконечного числа бесконечно малых слагаемых. В зависимости от пространства, на котором задана подынтегральная функция, интеграл может быть...