Понятия со словом «экстраполирование»

Связанные понятия

Статистический вывод (англ. statistical inference), также называемый индуктивной статистикой (англ. inferential statistics, inductive statistics) — обобщение информации из выборки для получения представления о свойствах генеральной совокупности.
Описательная статистика или дескриптивная статистика (англ. descriptive statistics) занимается обработкой эмпирических данных, их систематизацией, наглядным представлением в форме графиков и таблиц, а также их количественным описанием посредством основных статистических показателей.
Эмпирические исследования – наблюдение и исследование конкретных явлений, эксперимент, а также обобщение, классификация и описание результатов исследования эксперимента, внедрение их в практическую деятельность человека.
Доверительный интервал — термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки, чем точечная. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью.
Гетероскедастичность (англ. heteroscedasticity) — понятие, используемое в прикладной статистике (чаще всего — в эконометрике), означающее неоднородность наблюдений, выражающуюся в неодинаковой (непостоянной) дисперсии случайной ошибки регрессионной (эконометрической) модели. Гетероскедастичность противоположна гомоскедастичности, означающей однородность наблюдений, то есть постоянство дисперсии случайных ошибок модели.
Операциональное определение (англ. operational definition) или рабочее определение — описание явления (переменной, термина, объекта и т. д.) в терминах операций (процесса), которые необходимо произвести для подтверждения наличия явления, измерения его продолжительности и величины. Операциональное определение противопоставляется теоретическому, или концептуальному определению (которое, как правило, даётся в словарях и малопригодно при проведении практических исследований и измерений) и является результатом...
Обратная вероятность, по-разному интерпретированная, не была доминирующим подходом к статистике вплоть до развития частотного подхода в начале 20 века Р.А.Фишер, Ежи Нейман и Эгон Пирсон. После разработки частотного подхода, термины частотная и Байесовская развивались при противопоставлении этих подходов, и получили широкое распространение в 1950-х годах.
Теория оценивания — раздел математической статистики, решающий задачи оценивания непосредственно не наблюдаемых параметров сигналов или объектов наблюдения на основе наблюдаемых данных. Для решения задач оценивания применяется параметрический и непараметрический подход. Параметрический подход используется, когда известна математическая модель...
Статистический критерий — строгое математическое правило, по которому принимается или отвергается та или иная статистическая гипотеза с известным уровнем значимости. Построение критерия представляет собой выбор подходящей функции от результатов наблюдений (ряда эмпирически полученных значений признака), которая служит для выявления меры расхождения между эмпирическими значениями и гипотетическими.
Экзогенность — буквально «внешнее происхождение» — свойство факторов (и важнейшее требование, предъявляемое к ним) эконометрических моделей, заключающееся в предопределённости, заданности их значений, независимости от функционирования моделируемой системы (явления, процесса). Экзогенность противоположна эндогенности. Значения экзогенных переменных определяется вне модели, и на их основе в рамках рассматриваемой модели определяются значения эндогенных переменных.
Конструктная валидность (концептуальная, понятийная валидность) — частный случай операциональной валидности, степень адекватности метода интерпретации экспериментальных данных теории, которая определяется правильностью употребления терминов той или иной теории.
Автокорреляция — статистическая взаимосвязь между последовательностями величин одного ряда, взятыми со сдвигом, например, для случайного процесса — со сдвигом по времени.
Усечённая регрессия (англ. Truncated regression) или регрессия с урезанной выборкой — модель регрессии в условиях, когда выборка осуществляется только из тех наблюдений, которые, которые удовлетворяют априорным ограничениям, которые обычно формулируются как ограничение снизу и (или) сверху зависимой переменной. Урезание выборки приводит к смещенности МНК -оценок, поэтому оцениваются такие модели с помощью метода максимального правдоподобия.
Вариационная статистика — исчисление числовых и функциональных характеристик эмпирических распределений. Если в какой-либо группе объектов показатель изучаемого признака изменяется (варьирует) от объекта к объекту, то каждому значению такого показателя х1 …, хn (n — общее количество объектов) ставят в соответствие одну и ту же вероятность, равную 1/n. Такое формально введенное «распределение вероятностей», называется эмпирическим, можно истолковать как распределение вероятностей некоторой искусственно...
Детерминированность (от лат. determinans — определяющий) — определяемость. Детерминированность может подразумевать определяемость на общегносеологическом уровне или для конкретного алгоритма. Под жёсткой детерминированностью процессов в мире понимается однозначная предопределённость, то есть у каждого следствия есть строго определённая причина. В таком смысле является антонимом стохастичности. Но детерминированность не всегда тождественна предопределённости. Например, может быть детерминированность...
Логистическая регрессия или логит-регрессия (англ. logit model) — это статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём подгонки данных к логистической кривой.
Коэффициент Байеса — это байесовская альтернатива проверке статистических гипотез. Байесовское сравнение моделей — это метод выбора моделей на основе коэффициентов Байеса. Обсуждаемые модели являются статистическими моделями. Целью коэффициента Байеса является количественное выражение поддержки модели по сравнению с другой моделью, независимо от того, верны модели или нет. Техническое определение понятия «поддержка» в контексте байесовского вывода дано ниже.
Смещение вследствие пропущенных переменных (англ. Omitted variable bias) — явление в регрессионном анализе, связанное с получением, смещённых и несостоятельных оценок регрессионных коэффициентов вследствие некорректной спецификации модели, а именно невключения в оцениваемую модель независимых переменных, оказывающих причинно-следственное влияние на зависимую переменную, или невозможности включить в неё некую ненаблюдаемую независимую переменную.
Математи́ческая стати́стика — наука, разрабатывающая математические методы систематизации и использования статистических данных для научных и практических выводов.
Вероятностная логика — логика, в которой высказываниям приписываются не исключительно значения истины и лжи как в двузначной логике, а непрерывная шкала значений истинности от 0 до 1, так, что ноль соответствует невозможному событию, единица — практически достоверному. Значения истинности в вероятностной логике называются вероятностями истинности высказываний, степенями правдоподобия или подтверждения.
Вычисле́ние — математическое преобразование, позволяющее преобразовывать входящий поток информации в выходной, с отличной от первого структурой. Если смотреть с точки зрения теории информации, вычисление — это получение из входных данных нового знания.
Гомоскедастичность (англ. homoscedasticity) — однородная вариативность значений наблюдений, выражающаяся в относительной стабильности, гомогенности дисперсии случайной ошибки регрессионной модели. Явление, противоположное гетероскедастичности. Является обязательным предусловием применения метода наименьших квадратов, который может быть использован только для гомоскедастичных наблюдений.
Функция предельного правдоподобия (англ. Marginal Likelihood Function) или интегрированное правдоподобие (англ. integrated likelihood) — это функция правдоподобия, в которой некоторые переменные параметры исключены. В контексте байесовской статистики, функция может называться обоснованностью (англ. evidence) или обоснованностью модели (англ. model evidence).

Подробнее: Предельное правдоподобие
Байесовская вероятность — это интерпретация понятия вероятности, используемая в байесовской теории. Вероятность определяется как степень уверенности в истинности суждения. Для определения степени уверенности в истинности суждения при получении новой информации в байесовской теории используется теорема Байеса.
Фа́кторный анализ — многомерный метод, применяемый для изучения взаимосвязей между значениями переменных. Предполагается, что известные переменные зависят от меньшего количества неизвестных переменных и случайной ошибки.
Риск (теория принятия решений) — математическое ожидание функции потерь вследствие принятия решения. Является количественной оценкой последствий принятого решения. Минимизация риска является главным критерием оптимальности в теории принятия решений.
Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.
Конти́нуум в физике обозначает некоторую сплошную среду, в которой исследуются процессы/поведение этой среды при различных внешних условиях. Вводится на основании гипотезы сплошности, в рамках которой пренебрегают структурой исследуемых тел и сред, усредняя их микроструктурные характеристики по физически малому объёму. Непрерывным континуумом можно считать как обычные материальные тела, так и различные поля, например, электромагнитное поле.
Критерии нормальности — это группа статистических критериев, предназначенных для проверки нормальности распределения. Критерии нормальности являются частным случаем критериев согласия.
Модель упорядоченного выбора (упорядоченная регрессия, англ. ordered choice) — применяемая в эконометрике модель с упорядоченной (с ранжированными значениями) дискретной зависимой переменной, в качестве которой могут выступать, например, оценки чего-либо по пятибалльной шкале, рейтинги компаний и т. д. В рамках данной модели предполагается, что количество значений зависимой переменной конечно.
Гауссовский процесс назван так в честь Карла Фридриха Гаусса, поскольку в его основе лежит понятие гауссовского распределения (нормального распределения). Гауссовский процесс может рассматриваться как бесконечномерное обобщение многомерных нормальных распределений. Эти процессы применяются в статистическом моделировании; в частности используются свойства нормальности. Например, если случайный процесс моделируется как гауссовский, то распределения различных производных величин, такие как среднее значение...
Фиксированные эффекты с индивидуальными наклонами (англ. Fixed effects with invidual-specific slopes, fixed effects with individual slopes, FEIS, FE-IS) — разновидность регрессионного анализа на панельных данных с фиксированными эффектами, позволяющая получать оценки не только индивидуального эффекта в общей константе модели (как делает стандартная FE-модель), но и вводить характерные для индивидов в выборке наклоны для независимой переменной. FEIS-оценки были впервые введены в статье (Polachek...
Абдукция (от лат. ab — от и лат. ducere — водить) — познавательная процедура выдвижения гипотез.
Функция потерь — функция, которая в теории статистических решений характеризует потери при неправильном принятии решений на основе наблюдаемых данных. Если решается задача оценки параметра сигнала на фоне помех, то функция потерь является мерой расхождения между истинным значением оцениваемого параметра и оценкой параметра.
Проверка статистических гипотез является содержанием одного из обширных классов задач математической статистики.
Стандартные ошибки в форме Уайта или состоятельные при гетероскедастичности стандартные ошибки (HC s.e. — Heteroskedasticity consistent standard errors) — применяемая в эконометрике оценка ковариационной матрицы (в частности и стандартных ошибок) МНК-оценок параметров линейной модели регрессии, которая состоятельна при гетероскедастичности случайных ошибок модели, альтернативная стандартной (классической) оценке, которая в данном случае является несостоятельной.
Объяснительная сила — это способность теории полно и точно описывать собственный объект. Одним из главных критериев объяснительной силы является предсказательная сила, то есть из двух теорий с общим объектом обладающей большей объяснительной силой признаётся та, в рамках которой можно составить более точный и достоверный прогноз.
Вне́шне несвя́занные уравне́ния (англ. Seemingly Unrelated Regressions (SUR)) — система эконометрических уравнений, каждое из которых является самостоятельным уравнением со своей зависимой и объясняющими экзогенными переменными. Модель предложена Зельнером в 1968 году. Важной особенностью данных уравнений является то, что несмотря на кажущуюся несвязанность уравнений их случайные ошибки предполагаются коррелированными между собой.
Стохастическая аппроксимация — рекуррентный метод построения состоятельной последовательности оценок решений уравнений регрессии и экстремумов функций регрессии в задачах непараметрического оценивания. В биологии, химии, медицине используется для анализа результатов опытов. В теории автоматического управления применяется как средство решения задач распознавания, идентификации, обучения и адаптации.
Метатеория — теория, анализирующая методы и свойства другой теории, так называемой предметной или объектной теории.
Статистика — измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения элементов выборки.
Реляционное исчисление — прикладная ветвь формальной теории, носящей название «исчисления предикатов первого порядка». В основе исчисления лежит понятие переменной с определенной для неё областью допустимых значений и понятие правильно построенной формулы, опирающейся на переменные, предикаты и кванторы. Наряду с реляционной алгеброй является способом получения результирующего отношения в реляционной модели данных. В зависимости от того, что является областью определения переменной, различают...
Наи́вный ба́йесовский классифика́тор — простой вероятностный классификатор, основанный на применении теоремы Байеса со строгими (наивными) предположениями о независимости.
Стандартные ошибки в форме Ньюи-Уеста или состоятельные при гетероскедастичности и автокорреляции стандартные ошибки (HAC s.e. — Heteroskedasticity and Autocorrelation consistent standard errors) — применяемая в эконометрике оценка ковариационной матрицы МНК-оценок (в частности и стандартных ошибок) параметров линейной модели регрессии, альтернативная стандартной (классической) оценке, которая состоятельна при гетероскедастичности и автокорреляции случайных ошибок модели (в отличие от несостоятельной...
Многомерное шкалирование — метод анализа и визуализации данных с помощью расположения точек, соответствующих изучаемым (шкалируемым) объектам, в пространстве меньшей размерности чем пространство признаков объектов. Точки размещаются так, чтобы попарные расстояния между ними в новом пространстве как можно меньше отличались от эмпирически измеренных расстояний в пространстве признаков изучаемых объектов. Если элементы матрицы расстояний получены по интервальным шкалам, метод многомерного шкалирования...
В статистике метод оценки с помощью апостериорного максимума (MAP) тесно связан с методом максимального правдоподобия (ML), но дополнительно при оптимизации использует априорное распределение величины, которую оценивает.

Подробнее: Оценка апостериорного максимума
Принцип наблюдаемости — принцип в теоритической физике, требующий, чтобы в науку вводились не умозрительные, а только наблюдаемые величины и утверждения — утверждения, которые можно хотя бы мысленно, хотя бы в принципе проверить на опыте.
Выборочные моменты в математической статистике — это оценка теоретических моментов распределения на основе выборки.
Крите́рий (др.-греч. κριτήριον — способность различения, средство суждения, мерило) — признак, основание, правило принятия решения по оценке чего-либо на соответствие предъявленным требованиям (мере). Особо выделяют критерии истинности знания. Различают логические (формальные) и эмпирические (экспериментальные) критерии истинности. Формальным критерием истины служат логические законы: истинно всё, что не заключает в себе противоречия, логически правильно. Эмпирическим критерием истинности служит...
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я