Связанные понятия
Функция предельного правдоподобия (англ. Marginal Likelihood Function) или интегрированное правдоподобие (англ. integrated likelihood) — это функция правдоподобия, в которой некоторые переменные параметры исключены. В контексте байесовской статистики, функция может называться обоснованностью (англ. evidence) или обоснованностью модели (англ. model evidence).
Подробнее: Предельное правдоподобие
Интервальная оце́нка — это пара чисел в математической статистике, оцениваемых на основе наблюдений, между которыми предположительно находится оцениваемый параметр.
Закон сравнительных суждений - психофизический закон, определяющий отношение между двумя объектами в психическом пространстве человека. Сформулирован Л. Л. Терстоуном.
Модели дискретного выбора — экономические (эконометрические) модели, позволяющие описывать, объяснять и прогнозировать выбор между, двумя или более альтернативами (то есть когда множество альтернатив не более чем счетно). Модели дискретного выбора позволяют на основе некоторых характеристик (атрибутов) экономического субъекта или ситуации оценить вероятность выбора той или иной альтернативы.
Подробнее: Дискретный выбор
В статистике метод оценки с помощью апостериорного максимума (MAP) тесно связан с методом максимального правдоподобия (ML), но дополнительно при оптимизации использует априорное распределение величины, которую оценивает.
Подробнее: Оценка апостериорного максимума
Теорема схем , или теорема шаблонов — основная теорема теории генетических алгоритмов, дающая обоснование их эффективности. Впервые сформулирована и доказана Дж. Холландом в 1975 году.
Коэффицие́нт асимметри́и в теории вероятностей — величина, характеризующая асимметрию распределения данной случайной величины.
Геостати́стика — наука и технология для анализа, обработки и представления пространственно-распределенной (или пространственно-временной) информации с помощью статистических методов. Геостатистика моделирует распределение объектов, явлений и процессов в географическом пространстве.
Эффекти́вная оце́нка в математической статистике — несмещенная статистическая оценка, дисперсия которой совпадает с нижней гранью в неравенстве Крамера-Рао.
Анализ полных наблюдений (англ. listwise/casewise deletion, реже англ. complete-case analysis) — статистический метод обработки пропущенных данных, основанный на удалении всех наблюдений с неполными признаковыми описаниями. Считается самым простым способом разрешения проблемы пропущенных данных.
Вне́шне несвя́занные уравне́ния (англ. Seemingly Unrelated Regressions (SUR)) — система эконометрических уравнений, каждое из которых является самостоятельным уравнением со своей зависимой и объясняющими экзогенными переменными. Модель предложена Зельнером в 1968 году. Важной особенностью данных уравнений является то, что несмотря на кажущуюся несвязанность уравнений их случайные ошибки предполагаются коррелированными между собой.
Теория вычислительного обучения (англ. computational learning theory, или просто теория обучения), это подобласть теории искусственного интеллекта, посвящённая разработке и анализу алгоритмов обучения машин.
Элиминация кванторов — получение по заданной логической формуле эквивалентной ей, не содержащей кванторов. Теории, допускающие элиминацию кванторов для любой формулы, представляют особый интерес, поскольку наличие алгоритма элиминации позволяет получить ряд содержательных результатов об этой теории.
Тест Хаусмана , называемый также тестом Ву-Хаусмана или Дарбина-Ву-Хаусмана — применяемый в эконометрике тест для сравнения моделей, оцененных разными методами, один из которых позволяет получить состоятельные оценки и при нулевой и при альтернативной гипотезе, а другой — только при нулевой гипотезе.
Статистический параметр или параметр совокупности — это величина, которая индексирует семейство распределений вероятностей. Его можно расценивать как числовую характеристику совокупности или статистической модели.
В статистике под латентными или скрытыми переменными понимают такие переменные, которые не могут быть измерены в явном виде, а могут быть только выведены через математические модели с использованием наблюдаемых переменных. Скрытые переменные используются во многих областях, включая психологию, экономику, машинное обучение, биоинформатику, обработку естественного языка и социальные науки.
Подробнее: Скрытая переменная
Ядро м (англ. kernel) в статистике и эконометрике называют окно (весовую функцию). Байесовская, непараметрическая статистика и теория распознавания образов трактуют термин по-разному.
Теорема существования — утверждение, которое устанавливает, при каких условиях существует решение математической задачи или математический объект, например производная, неопределенный интеграл, определенный интеграл, решение уравнения и т. д. При доказательстве теорем существования используются сведения из теории множеств. Теоремы существования играют очень важную роль в различных приложениях математики, например при математическом моделировании различных явлений и процессов. Математическая модель...
Сфера Блоха — способ представления чистых состояний кубита в виде точек на сфере.
Случайный элемент — обобщение понятия случайной величины. Термин был введён, по-видимому, М.Фреше (1948), отмечавшим, что «развитие теории вероятностей и расширение области её приложений привели к необходимости перейти от схем, где (случайные) исходы опыта могут быть описаны числом или конечным набором чисел, к схемам, где исходы опыта представляют собой, например, векторы, функции, процессы, поля, ряды, преобразования, а также множества или наборы множеств».
Q-критерий Розенбаума — простой непараметрический статистический критерий, используемый для оценки различий между двумя выборками по уровню какого-либо признака, измеренного количественно.
Доказательные вычисления — целенаправленные вычисления на ЭВМ, комбинируемые с аналитическими исследованиями, которые приводят к строгому установлению новых фактов и доказательству теорем.
Алгоритмическая теория информации — это область информатики, которая пытается уловить суть сложности, используя инструменты из теоретической информатики. Главная идея — это определить сложность (или описательную сложность, колмогоровскую сложность, сложность Колмогорова-Хайтина) строки как длину кратчайшей программы, которая выводит заданную строку. Строки, которые могут выводиться короткими программами, рассматриваются как не очень сложные. Эта нотация удивительно глубока и может быть использована...
Статистическая теория поля — раздел статистической физики, в котором изучаются пространственные случайные системы с взаимодействием. Объектами изучения в статистической теории поля являются поля или системы, число степеней свободы которых сравнимо с полем. Для равновесных состояний микросостояния системы выражены через полевые конфигурации. В рамках этого раздела изучаются статистические системы случайных полей. Это область тесно связана с квантовой теорией поля, которая описывает квантовую динамику...
Кватернионный анализ — это раздел математики, изучающий регулярные кватернионнозначные функции кватернионного переменного. Из-за некоммутативности алгебры кватернионов существуют различные неравносильные подходы к определению регулярных кватернионных функций. В данной статье будет рассматриваться, в основном, подход Фютера.
Пото́к одноро́дных собы́тий — случайная последовательность событий, упорядоченных по неубыванию моментов времени. Если данный момент времени совпадает с одним или несколькими событиями данной последовательности, то говорят, что в этот момент произошло соответствующее число событий потока.
Преобразование Вигнера — Вилла (англ. Wigner — Ville transform) — один из эффективных методов спектрально-временного анализа нестационарных сигналов. Встречаются другие названия: преобразование Вигнера — Вилля, распределение Вигнера — Вилла (англ. Wigner — Ville distribution), распределение Вигнера — Вилля, функция Вигнера.
В математической статистике
критерий знаков используется при проверке нулевой гипотезы о равенстве медианы некоторому заданному значению (для одной выборки) или о равенстве нулю медианы разности (для двух связанных выборок). Это непараметрический критерий, то есть он не использует никаких данных о характере распределения, и может применяться в широком спектре ситуаций, однако при этом он может иметь меньшую мощность, чем более специализированные критерии.
По́лная систе́ма коммути́рующих наблюда́емых (ПСКН) — множество перестановочных (коммутирующих) самосопряжённых операторов, описывающих квантовые наблюдаемые и определяющих обобщённый базис пространства чистых состояний квантовой системы. Это понятие впервые было предложено Дираком и является одним из основных в квантовой механике. Обобщенные собственные значения операторов ПСКН называются квантовыми числами.
Минимизация эмпирического риска (МЭР, англ. Empirical risk minimization, ERM) — это принцип статистической теории обучения, который определяет семейство алгоритмов обучения и который задаёт теоретические границы производительности.
Структурное прогнозирование или структурное обучение является собирательным термином для техник обучения машин с учителем, которые вовлекают предвидение структурных объектов, а не скалярных дискретных или вещественных значений.
Микроканонический ансамбль — статистический ансамбль макроскопической изолированной системы с постоянными значениями объёма V, числа частиц N и энергии E. Понятие микроканонического ансамбля является идеализацией, так как в действительности полностью изолированных систем не существует. В микроканоническом распределении Гиббса все микроскопические состояния, отвечающие данной энергии, равновероятны согласно эргодической гипотезе. Теорема Гиббса, доказанная автором, утверждает, что малую часть микроканонического...
Конти́нуум в физике обозначает некоторую сплошную среду, в которой исследуются процессы/поведение этой среды при различных внешних условиях. Вводится на основании гипотезы сплошности, в рамках которой пренебрегают структурой исследуемых тел и сред, усредняя их микроструктурные характеристики по физически малому объёму. Непрерывным континуумом можно считать как обычные материальные тела, так и различные поля, например, электромагнитное поле.
Амплитудно-фазовая частотная характеристика (АФЧХ) — удобное представление частотного отклика линейной стационарной динамической системы в виде графика в комплексных координатах. На таком графике частота выступает в качестве параметра кривой, фаза и амплитуда системы на заданной частоте представляется углом и длиной радиус-вектора каждой точки характеристики. По сути такой график объединяет на одной плоскости амплитудно-частотную и фазо-частотную характеристики.
Эллиптические уравнения — класс дифференциальных уравнений в частных производных, описывающих стационарные процессы.
Подробнее: Эллиптическое уравнение
Метод золотого сечения — метод поиска экстремума действительной функции одной переменной на заданном отрезке. В основе метода лежит принцип деления отрезка в пропорциях золотого сечения. Является одним из простейших вычислительных методов решения задач оптимизации. Впервые представлен Джеком Кифером в 1953 году.
Пространство состояний — в теории управления один из основных методов описания поведения динамической системы. Движение системы в пространстве состояний отражает изменение её состояний.
Многомерное шкалирование — метод анализа и визуализации данных с помощью расположения точек, соответствующих изучаемым (шкалируемым) объектам, в пространстве меньшей размерности чем пространство признаков объектов. Точки размещаются так, чтобы попарные расстояния между ними в новом пространстве как можно меньше отличались от эмпирически измеренных расстояний в пространстве признаков изучаемых объектов. Если элементы матрицы расстояний получены по интервальным шкалам, метод многомерного шкалирования...
Физи́ческое модели́рование — метод экспериментального изучения различных физических объектов или явлений, основанный на использовании модели, имеющей ту же физическую природу, что и изучаемый объект.
Стационарное состояние в теории динамических систем — это такое состояние системы или процесса, в котором динамика переменных, описывающих поведение системы или процесса и называемых переменными состояния, не меняется во времени (в отличие от переходного процесса). Синонимы: стационарное решение, стационарный режим, стационарное движение, установившиеся движения.
В математике константой
Чигера (также числом Чигера или изопериметрическим числом) графа называется числовая характеристика графа, отражающая, есть ли у графа «узкое место» или нет. Константа Чигера как способ измерения наличия «узкого места» представляет интерес во многих областях, например, для создания сильно связанных компьютерных сетей, для тасования карт и в топологии малых размерностей (в частности, при изучении гиперболических 3-мерных многообразий). Названа в честь математика Джефа Чигера...
Закон повторного логарифма — предельный закон теории вероятностей. Теорема определяет порядок роста делителя последовательности сумм случайных величин, при котором эта последовательность не сходится к нулю, но остается почти всюду в конечных пределах.
Сглаживающий сплайн (англ. smoothing spline) это метод сглаживания (аппроксимации кривой набора зашумлённых исходных данных) с использованием сплайн-функций.
Задача выполнимости формул в теориях (англ. satisfiability modulo theories, SMT) — это задача разрешимости для логических формул с учётом лежащих в их основе теорий. Примерами таких теорий для SMT-формул являются: теории целых и вещественных чисел, теории списков, массивов, битовых векторов и т. п.
Мартинга́л в теории случайных процессов — такой случайный процесс, что наилучшим (в смысле среднеквадратичного) предсказанием поведения процесса в будущем является его настоящее состояние.
В квантовой механике,
ток вероятности (или поток вероятности) описывает изменение функции плотности вероятности.
Теорема о четырёх вершинах утверждает, что функция кривизны простой замкнутой гладкой плоской кривой имеет по меньшей мере четыре локальных экстремума (в частности, по меньшей мере два локальных максимума и по меньшей мере два локальных минимума). Название теоремы отражает соглашение называть экстремальные точки функции кривизны вершинами.
Зада́ча Не́ймана , вторая краевая задача — в дифференциальных уравнениях краевая задача с заданными граничными условиями для производной искомой функции на границе области — так называемые граничные условия второго рода. По типу области задачи Неймана можно разделить на два типа: внутренние и внешние. Названа в честь Карла Неймана.