Понятия со словом «вышеприведённый»
Связанные понятия
Энтимéма (др.-греч. ἐνθύμημα, от др.-греч. ἐνθύμημαι — «имею в душе») — сокращённoe умозаключение, в котором в явной форме не выражена посылка или заключение, однако пропущенный элемент подразумевается.
Подробнее: Энтимема
Логика высказываний, или пропозициональная логика (лат. propositio — «высказывание»), или исчисление высказываний — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
Доведение до абсурда (лат. reductio ad absurdum), или апагогия («сведе́ние», др.-греч. Εις άτοπον απαγωγή), — логический приём, которым доказывается несостоятельность какого-нибудь мнения таким образом, что или в нём самом, или же в вытекающих из него следствиях обнаруживается противоречие.
Выска́зывание в математической логике — предложение, выражающее суждение. Если суждение, составляющее содержание (смысл) некоторого высказывания, истинно, то и о данном высказывании говорят, что оно истинно. Сходным образом ложным называют такое высказывание, которое является выражением ложного суждения. Истинность и ложность называются логическими, или истинностными, значениями высказываний.Высказывание должно быть повествовательным предложением, и противопоставляются повелительным, вопросительным...
Предика́т (лат. praedicatum «заявленное, упомянутое, сказанное») — это утверждение, высказанное о субъекте. Субъектом высказывания называется то, о чём делается утверждение.
Сужде́ние — мысль, в которой утверждается наличие или отсутствие каких-либо положений дел.
Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов. Конъюнктивная нормальная форма удобна для автоматического доказательства теорем. Любая булева формула может быть приведена к КНФ. Для этого можно использовать: закон двойного отрицания, закон де Моргана, дистрибутивность.
Доказательство — это процесс (метод) установления истины, логическая операция обоснования истинности утверждения с помощью фактов и связанных с ними суждений. С помощью совокупности логических приёмов истинность какого-либо суждения обосновывается исходя из других истинных суждений.
Интуициони́стское исчисле́ние выска́зываний, называемое иногда Интуициони́стской ло́гикой — формальная система, отражающая некоторые способы рассуждений, приемлемые с точки зрения интуиционизма. Предложена А. Гейтингом в 1930.
Рассуждение — последовательный ряд мыслей и умозаключений в контексте определённой темы, изложенных в логически последовательной форме.
Дизъюнкти́вная норма́льная фо́рма (ДНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид дизъюнкции конъюнкций литералов. Любая булева формула может быть приведена к ДНФ. Для этого можно использовать закон двойного отрицания, закон де Моргана, закон дистрибутивности. Дизъюнктивная нормальная форма удобна для автоматического доказательства теорем.
Дескрипция (лат. describere — описывать) — это описание, т.е. конструкция, по форме имеющая вид «тот …, который …». При построении логических средств она включается в язык в числе термов. Определенная дескрипция соответствует терму ιx.Φ, который канонически читается как «тот единственный x, для которого выполняется (верно) Φ». Неопределенная дескрипция соответствует терму εx.Φ, который канонически читается как «тот x, для которого выполняется (верно) Φ».
Логика первого порядка, называемая иногда логикой или исчислением предикатов — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высших порядков.
Парадокс Скулема — противоречивое рассуждение, описанное впервые норвежским математиком Туральфом Скулемом, связанное с использованием теоремы Лёвенгейма — Скулема для аксиоматической теории множеств.
Доказательство «от противного» (лат. contradictio in contrarium) в математике — вид доказательства, при котором «доказывание» некоторого суждения (тезиса доказательства) осуществляется через опровержение отрицания этого суждения — антитезиса. Этот способ доказательства основывается на истинности закона двойного отрицания в классической логике.
Ра́венство (отношение равенства) в математике — бинарное отношение, наиболее логически сильная разновидность отношений эквивалентности.
Перечислительная комбинаторика (или исчисляющая комбинаторика) — раздел комбинаторики, который рассматривает задачи о перечислении, то есть подсчёте количества, или непосредственного построения и перебора, различных конфигураций (например, перестановок), образуемых элементами конечных множеств, на которые могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п.
Парадокс в логике — это противоречие, имеющее статус логически корректного вывода и, вместе с тем, представляющее собой рассуждение, приводящее к взаимно исключающим заключениям. Логическая ошибка парадокса объясняется неверным выбором логических посылок, например, когда речь идет о предметах, не имеющих четкого определения (См. стрела Зенона).
Функция Геделя — функция, применяющаяся в теории алгоритмов для облегчения нумерации множеств натуральных чисел.
Аксио́ма (др.-греч. ἀξίωμα «утверждение, положение») или постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами.
Математическое доказательство — рассуждение с целью обоснования истинности какого-либо утверждения (теоремы), цепочка логических умозаключений, показывающая, что при условии истинности некоторого набора аксиом и правил вывода утверждение верно. В зависимости от контекста, может иметься в виду доказательство в рамках некоторой формальной системы (построенная по специальным правилам последовательность утверждений, записанная на формальном языке) или текст на естественном языке, по которому при необходимости...
Математическая индукция — метод математического доказательства, который используется, чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 — база (базис) индукции, а затем доказывается, что если верно утверждение с номером n, то верно и следующее утверждение с номером n + 1 — шаг индукции, или индукционный переход.
Прескри́пция (от лат. prescribere — предписывать; отсюда буквальное значение — предписание), прескриптивное высказывание, нормативное высказывание — высказывание о должном, то есть высказывание, утверждающее необходимость каких-либо действий или их отсутствия и не обладающее истинностным значением, в отличие от противопоставляемого ему описывающего, дескриптивного высказывания. Прескриптивными высказываниями являются правовые, моральные и иные нормы, поскольку каждая из них содержит предписание...
Форма́льная систе́ма (форма́льная тео́рия, аксиоматическая теория, аксиоматика, дедуктивная система) — результат строгой формализации теории, предполагающей полную абстракцию от смысла слов используемого языка, причем все условия, регулирующие употребление этих слов в теории, явно высказаны посредством аксиом и правил, позволяющих вывести одну фразу из других.
Парадокс Ябло (англ. Yablo's paradox) — это логический парадокс, похожий на парадокс лжеца. Был опубликован Стефаном Ябло в 1993 году. Важность этого парадокса в том, что, хотя он похож на парадокс лжеца и разные его варианты, этот парадокс, по крайней мере на первый взгляд, избегает самореференции. Правда, многие считают, что это только на первый взгляд, и самореференция «спрятана» внутри парадокса.
При конструктивном подходе к определению вещественного числа вещественные числа строят, исходя из рациональных, которые считают заданными. Во всех трёх нижеизложенных способах за основу берутся рациональные числа и конструируются новые объекты, называемые иррациональными числами. В результате пополнения ими множества рациональных чисел, мы получаем множество вещественных чисел.
Подробнее: Конструктивные способы определения вещественного числа
Бу́лева фу́нкция (или логи́ческая функция, или функция а́лгебры ло́гики) от n аргументов — в дискретной математике — отображение Bn → B, где B = {0,1} — булево множество. Элементы булева множества {1, 0} обычно интерпретируют как логические значения «истинно» и «ложно», хотя в общем случае они рассматриваются как формальные символы, не несущие определённого смысла. Неотрицательное целое число n называют арностью или местностью функции, в случае n = 0 булева функция превращается в булеву константу...
Аксио́мы Пеа́но — одна из систем аксиом для натуральных чисел, введённая в XIX веке итальянским математиком Джузеппе Пеано.
Силлогистика (др.-греч. συλλογιστικός умозаключающий) — теория логического вывода, исследующая умозаключения, состоящие из т. н. категорических высказываний (суждений). В силлогистике рассматриваются, например, выводы заключения из одной посылки (т. н. непосредственные умозаключения), «сложные силлогизмы», или полисиллогизмы, имеющие не менее трёх посылок. Однако основное внимание силлогистика уделяет теории категорического силлогизма, имеющего ровно две посылки и одно заключение указанного вида...
Подробнее: Силлогистические теории
Многозна́чная ло́гика — тип формальной логики, в которой допускается более двух истинностных значений для высказываний. Первую систему многозначной логики предложил польский философ Ян Лукасевич в 1920 году. В настоящее время существует очень много других систем многозначной логики, которые в свою очередь могут быть сгруппированы по классам. Важнейшими из таких классов являются частичные логики и нечёткие логики.
Теорема о разностях — теорема, связывающая понятия производной и прямой конечной разности высших порядков для степенной функции натурального показателя степени.
Деление понятий — это логическая операция, посредством которой объем делимого понятия распределяется по объемам новых понятий, каждое из которых представляет частный случай исходного понятия. Например, расчёты делятся на наличные и безналичные. Понятия разделяются исходя из существенного признака, который может изменяться по определенному принципу или правилу (например, образование из понятия «торговый баланс» новых понятий, в которых фиксируется то или иное соотношение ввоза и вывоза товаров).
Антецедент (лат. antecedens — «предшествующее») — на языке старых философов, особенно у логиков Кантовской школы, в их учении о суждениях, заключениях и доказательствах антецедент означает, отчасти — логическое подлежащее в его отношении к сказуемому, отчасти — причину в отношении к следствию.
Незави́симость систе́мы аксио́м ― свойство системы аксиом данной аксиоматической теории, состоящее в том, что каждая аксиома является независимой, то есть не является логическим следствием из множества остальных аксиом этой теории. Система аксиом, обладающая этим свойством, называется независимой.
Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
В математической логике, Эрбранова интерпретация — это интерпретация, в которой константам и функциональным символам присвоен очень простой смысл. Конкретнее, каждая константа интерпретируется как она сама, функциональный символ же интерпретируется как функция, которая применяется. Интерпретация также определяет предикатные символы как задающие подмножество соответствующей Эрбрановой базы, фактически задавая, каким образом вычисляется значение замкнутых формул. Это позволяет интерпретировать символы...
Математическая формула (от лат. formula — уменьшительное от forma — образ, вид) — в математике, а также физике и прикладных науках, символическая запись высказывания (которое выражает логическое суждение), либо формы высказывания. Формула, наряду с термами, является разновидностью выражения формализованного языка.
Арифметика Пресбургера — это теория первого порядка, описывающая натуральные числа со сложением, но в отличие от арифметики Пеано, исключающая высказывания относительно умножения. Названа в честь польского математика Мойжеша Пресбургера, который в 1929 году предложил соответствующую систему аксиом в логике первого порядка, а также показал её разрешимость.
«Тогда́ и то́лько тогда́» — логическая связка эквиваленции между утверждениями, применяемая в логике, математике, философии. Чтобы быть эквиваленцией, связка должна быть идентична стандартному материальному условному высказыванию («только тогда» эквивалентно «если … то»), соединённому со своей противоположностью, откуда и название связки. В результате истинность одного утверждения требует такой же истинности другого, то есть либо оба они истинны, либо оба ложны. Можно спорить о том, передаёт ли выражение...
Деду́кция (лат. deductio — выведение, также дедуктивное умозаключение, силлогизм) — метод мышления, следствием которого является логический вывод, в котором частное заключение выводится из общего. Цепь умозаключений (рассуждений), где звенья (высказывания) связаны между собой логическими выводами.
Подробнее: Дедуктивное умозаключение
Дробная производная (или производная дробного порядка) является обобщением математического понятия производной. Существует несколько разных способов обобщить это понятие, но все они совпадают с понятием обычной производной в случае натурального порядка. Когда рассматриваются не только дробные, но и отрицательные порядки производной, к такой производной обычно применяется термин дифферинтеграл.
Пресуппози́ция (от лат. prae — впереди, перед и suppositio — подкладывание, заклад) (также презу́мпция) в лингвистической семантике — необходимый семантический компонент, обеспечивающий наличие смысла в утверждении.
Заключе́ние — логическая противоположность основанию в логическом выводе. Суждение, считающееся истинным в том случае, когда истинными признаются его предпосылки.В быту понятие используется примерно с тем же значением, обозначая, в широком смысле, любой предположительно правильный вывод или следствие из чего-нибудь, как, например, во фразе «Я пришел к заключению, что вы были правы» или в выражении «заключение экспертов».
Термин
рекурсивная функция в теории вычислимости используется для обозначения трёх классов функций...
Программа Гильберта в математике была сформулирована немецким математиком Давидом Гильбертом в начале 20-го века. Гильберт предположил, что согласованность более сложных систем, таких как реальный анализ, может быть доказана в терминах более простых систем. В конечном счете, непротиворечивость всей математики может быть сведена к простой арифметике.