Число Райо
Число Райо — большое число, названное в честь Агустина Райо, который объявил самое большое число с собственным именем . Изначально ему было дано точное определение на «дуэли больших чисел» в Массачусетском технологическом институте 26 января 2007 года.
Определением числа Райо является вариация определения:
Самое маленькое число, большее, чем любое конечное число, определённое выражением на языке теории множеств с использованием гугола символов или меньше.
Позднее первоначальный вариант определения был уточнён, и теперь определение звучит следующим образом: «Самое маленькое число, большее чем любое конечное число, которое может быть определено выражением на языке первого порядка теории множеств с использованием менее, чем гугола (10100) символов».
Формальное определение числа использует следующую формулу второго порядка , где [φ] — формула нумерации Гёделя , а s — назначение переменной:
∀R {
{для любой (закодированной) формулы [ψ] и любой переменной t
(R( [ψ],t) ↔
( ([ψ] = `xi ∈ xj' ∧ t(x1) ∈ t(xj)) ∨
([ψ] = `xi = xj' ∧ t(x1) = t(xj)) ∨
([ψ] = `(∼θ)' ∧ ∼R([θ],t)) ∨
([ψ] = `(θ∧ξ)' ∧ R([θ],t) ∧ R([ξ],t)) ∨
([ψ] = `∃xi (θ)' и, для некоторого xi-вариантного t' от t, R([θ],t'))
)} →
R([φ],s)}
Учитывая эту формулу, число Райо определяется следующим образом:
Самое маленькое число, большее, чем любое конечное число m со следующим свойством: существует формула φ(x1) в языке первого порядка теории множеств (как представлено в определении `Sat') с менее, чем гуголом символов и x1, как единственной свободной переменной, такое что (1) существует назначение переменной s, определяющее m к x1, т. о., что Sat([φ(x1)], s) и (2) для любого назначения переменной t, если Sat([φ(x1)], t), то t определяет m к x1.
Источник: Википедия
Связанные понятия
Сюрреальные числа (англ. surreal number — название принадлежит американскому математику Дональду Кнуту) впервые были использованы под другим названием («числа» — англ. number) в работах английского математика Джона Конвея для описания ряда аспектов теории игр.
Праймориал (англ. Primorial, иногда именуется также «примориал») — в теории чисел функция над рядом натуральных чисел, схожая с функцией факториала, с разницей в том, что праймориал является последовательным произведением простых чисел, меньших или равных данному, в то время как факториал является последовательным произведением всех натуральных чисел, меньших или равных данному.
Неформально (обычно в развлекательной математике и научно-популярной литературе) большими числами называют числа, значительно превосходящие числа, используемые в повседневной жизни.
Подробнее: Большие числа
Четыре четверки — математическая головоломка по поиску простейшего математического выражения для каждого целого числа от 0 до некоторого максимума, используя лишь общие математические символы и четвёрки (никакие другие цифры не допускаются). Большинство версий «четырёх четверок» требует, чтобы каждое выражение содержало ровно четыре четверки, но некоторые вариации требуют, чтобы каждое выражение имело минимальное количество четверок.
n-ое
число такси , обычно обозначаемое Ta(n) или Taxicab(n), определяется как наименьшее число, которое может быть представлено как сумма двух положительных кубов n различными способами. Наиболее известное число такси — 1729 = Ta(2) = 13 + 123 = 93 + 103.
Число ́ — основное понятие математики, используемое для количественной характеристики, сравнения, нумерации объектов и их частей. Письменными знаками для обозначения чисел служат цифры, а также символы математических операций. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа с развитием науки значительно расширилось.
Полуинвариант ы, или семиинварианты, или кумулянты — коэффициенты в разложении логарифма характеристической функции случайной величины в ряд Маклорена.
История арифметики охватывает период от возникновения счёта до формального определения чисел и арифметических операций над ними с помощью системы аксиом. Арифметика — наука о числах, их свойствах и отношениях — является одной из основных математических наук. Она тесно связана с алгеброй и теорией чисел.
Эта страница содержит
список первых 500 простых чисел, а также списки некоторых специальных типов простых чисел.
Арифме́тика (др.-греч. ἀριθμητική (árithmitikí) — от ἀριθμός (árithmós) «число») — раздел математики, изучающий числа, их отношения и свойства. Предметом арифметики является понятие числа (натуральные, целые, рациональные, вещественные, комплексные числа) и его свойства. В арифметике рассматриваются измерения, вычислительные операции (сложение, вычитание, умножение, деление) и приёмы вычислений. Изучением свойств отдельных целых чисел занимается высшая арифметика, или теория чисел. Теоретическая...
Гипо́теза Коллатца (гипо́теза 3n+1, сираку́зская пробле́ма) — одна из нерешённых проблем математики.
Двенадцатикратный путь или двенадцать сценариев — это систематическая классификация 12 связанных перечислительных задач, касающихся двух конечных множеств, которые включают классические задачи подсчёта перестановок, сочетаний, мультимножеств и разбиений либо множества, либо числа. Идею классификации приписывают Джиану-Карло Роту, а название двенадцатикратный путь предложил Джоэл Спенсер. Название намекает, что используя те же подходы в 12 случаях, но с небольшими изменениями в условиях, мы получаем...
В теории множеств и смежных с ней областях математики под универсумом фон Неймана (обозначается V), или иерархией множеств по фон Нейману, понимается класс, образованный наследственными фундированными множествами. Такая совокупность, формализуемая теорией множеств Цермело-Френкеля (ZFC) часто используется в качестве интерпретации или обоснования ZFC-аксиом.
Подробнее: Универсум фон Неймана
Порядок Шарковского — упорядочение натуральных чисел, связанное с исследованием периодических точек динамических систем на отрезке или на вещественной прямой.
В комбинаторной математике под числом встреч понимается число перестановок множества {1, ..., n} с заданным числом неподвижных элементов.
Подробнее: Число встреч (комбинаторика)
Парадокс Берри — парадокс самореференции, заключённый во фразе «наименьшее натуральное число, которое нельзя описать менее чем заданным количеством слов» (англ. «the smallest possible integer not definable by a given number of words»). Впервые парадокс опубликован Бертраном Расселлом, приписав его авторство Дж. Дж. Берри (1867—1928), младшему библиотекарю Бодлианской библиотеки в Оксфорде. Считается, что Берри нашёл лишь частный случай парадокса — «первое неопределяемое порядковое» (англ. the first...
В математике, числа
негафибоначчи — отрицательно индексированные элементы последовательности чисел Фибоначчи.
Незаконное простое число — простое число, представляющее охраняемую законом информацию, которую запрещено хранить и распространять. Одно из первых незаконных простых чисел было обнародовано в 2001 году. При правильной интерпретации оно представляет собой компьютерную программу, которая обходит схемы защиты авторских прав. Распространение таких программ в США незаконно согласно DMCA, который выводит за пределы правового поля не только непосредственное нарушение авторских прав путём копирования, но...
В теории алгоритмов классами сложности называются множества вычислительных задач, примерно одинаковых по сложности вычисления. Говоря более узко, классы сложности — это множества предикатов (функций, получающих на вход слово и возвращающих ответ 0 или 1), использующих для вычисления примерно одинаковые количества ресурсов.
Подробнее: Класс сложности
Принцип Дирихле нередко применяется при доказательстве теорем, особенно в дискретной математике; в частности, в теории диофантовых приближений при анализе систем линейных неравенств.
Анализ бесконечно малых — историческое название математического анализа, раздела высшей математики, изучающего пределы, производные, интегралы и бесконечные ряды, и составляющего важную часть современного математического образования. Состоит из двух основных частей: дифференциального исчисления и интегрального исчисления, которые связаны между собой формулой Ньютона — Лейбница.
Говорят, что возникло
математическое совпадение , если два выражения дают почти одинаковые значения, хотя теоретически это совпадение никак объяснить нельзя.
Суперпростые числа (также известны как простые числа высшего порядка) — это подмножество простых чисел, стоящих в списке простых чисел на позициях, являющихся простыми числами (то есть это 2-е, 3-е, 5-е, 7-е, 11-е, 13-е, 17-е и т.д. по счёту простые числа).
Подробнее: Суперпростое число
Безопасное простое число — это простое число вида 2p + 1, где p также простое (и наоборот, p есть простое число Софи Жермен). Несколько первых безопасных простых чисел...
Мно́жество — одно из ключевых понятий математики; это математический объект, сам являющийся набором, совокупностью, собранием каких-либо объектов, которые называются элементами этого множества и обладают общим для всех их характеристическим свойством. Изучением общих свойств множеств занимаются теория множеств, а также смежные разделы математики и математической логики.
Алгори́тм (лат. algorithmi — от арабского имени математика Аль-Хорезми) — конечная совокупность точно заданных правил решения произвольного класса задач или набор инструкций, описывающих порядок действий исполнителя для решения некоторой задачи. В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок». Независимые инструкции могут выполняться...
Математические обозначения («язык математики») — сложная графическая система обозначений, служащая для изложения абстрактных математических идей и суждений в человеко-читаемой форме. Составляет (по своей сложности и разнообразию) значительную долю неречевых знаковых систем, применяемых человечеством. В данной статье описывается общепринятая международная система обозначений, хотя различные культуры прошлого имели свои собственные, и некоторые из них даже имеют ограниченное применение до сих пор...
При конструктивном подходе к определению вещественного числа вещественные числа строят, исходя из рациональных, которые считают заданными. Во всех трёх нижеизложенных способах за основу берутся рациональные числа и конструируются новые объекты, называемые иррациональными числами. В результате пополнения ими множества рациональных чисел, мы получаем множество вещественных чисел.
Подробнее: Конструктивные способы определения вещественного числа
Практичное число или панаритмичное число — это положительное целое число n, такое что все меньшие положительные целые числа могут быть представлены в виде суммы различных делителей числа n. Например, 12 является практичным числом, поскольку все числа от 1 до 11 можно представить в виде суммы делителей 1, 2, 3, 4 и 6 этого числа — кроме самих делителей, мы имеем 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1 и 11 = 6 + 3 + 2.
Переме́нная — атрибут физической или абстрактной системы, который может изменять своё, как правило численное, значение. Понятие переменной широко используется в таких областях как математика, естественные науки, техника и программирование. Примерами переменных могут служить: температура воздуха, параметр функции и многое другое.
РЕФАЛ (РЕкурсивных Функций АЛгоритмический) — один из старейших функциональных языков программирования, ориентированный на символьные вычисления: обработку символьных строк (например, алгебраические выкладки); перевод с одного языка (искусственного или естественного) на другой; решение проблем, связанных с искусственным интеллектом. Соединяет в себе математическую простоту с практической направленностью на написание больших и сложных программ.
Разделение секрета (англ. Secret sharing) — термин в криптографии, под которым понимают любой из способов распределения секрета среди группы участников, каждому из которых достаётся своя некая доля. Секрет может воссоздать только коалиция участников из первоначальной группы, причём входить в коалицию должно не менее некоторого изначально известного их числа.
Омега-язык (ω-язык) — это множество бесконечно длинных последовательностей символов.
Система Штейнера (названа именем Якоба Штейнера) — вариант блок-схем, точнее, t-схемы с λ = 1 и t ≥ 2.
Ри́мские ци́фры — цифры, использовавшиеся древними римлянами в их непозиционной системе счисления.
Многозна́чная зави́симость (тж. МЗЗ) — обобщение понятия функциональной зависимости, широко использующееся в теории баз данных. В концепции нормальных форм вводится для формального определения четвертой нормальной формы...
Теорема об уголках — доказанный результат в области аддитивной комбинаторики, утверждающий присутствие некой упорядоченной (в арифметическом смысле) структуры, называемой уголком, в достаточно больших двумерных множествах любой фиксированной плотности.
Факторизация целого числа — процесс определения простых чисел, являющихся делителями данного числа. Существует несколько проектов по разложению различных больших целых чисел на сомножители, например RSA-числа похожи на используемые в асимметричной RSA криптографии. Для некоторых чисел специального вида существуют более эффективные алгоритмы.
Подробнее: Рекорды факторизации целых чисел
Бесконечно малая — числовая функция или последовательность, которая стремится к нулю.
Сте́мминг — это процесс нахождения основы слова для заданного исходного слова. Основа слова не обязательно совпадает с морфологическим корнем слова.
Перечисляемый тип (сокращённо перечисле́ние, англ. enumeration, enumerated type) — в программировании тип данных, чьё множество значений представляет собой ограниченный список идентификаторов.
Рациональное решето — это алгоритм общего вида для разложения целых чисел на простые множители. Алгоритм является частным случаем общего метода решета числового поля. Хотя он менее эффективен, чем общий алгоритм, концептуально он проще. Алгоритм может помочь понять, как работает общий метод решета числового поля.
Теория Рамсея — раздел математики, изучающий условия, при которых в произвольно формируемых математических объектах обязан появиться некоторый порядок. Названа в честь Фрэнка Рамсея.
Правило умножения (правило «и») — одно из основных правил комбинаторики. Согласно ему, если элемент A можно выбрать n способами, и при любом выборе A элемент B можно выбрать m способами, то пару (A, B) можно выбрать n·m способами. Естественным образом обобщается на произвольное количество независимо выбираемых элементов.