Связанные понятия
В математике,
подкатегория A категории B называется отражающей, если функтор вложения A в B имеет левый сопряженный. Этот сопряженный функтор часто называют отражателем. Двойственное определение — A ко-отражающая , если функтор вложения имеет правый сопряженный.
Конкретная категория в математике — категория, снабжённая строгим функтором в категорию множеств. Благодаря этому функтору можно оперировать с объектами такой категории образом, сходным с работой с множествами с дополнительной структурой, а морфизмы представлять как функции, сохраняющие дополнительную структуру. Многие категории имеют очевидную интерпретацию конкретных категорий, например, категория групп, категория топологических пространств и собственно категория множеств. С другой стороны, существуют...
В теории категорий множества Hom (то есть множества морфизмов между двумя объектами) позволяют определить важные функторы в категорию множеств. Эти функторы называются функторами Hom и имеют многочисленные приложения в теории категорий и других областях математики.
Подробнее: Функтор Hom
Абелева категория — категория, в которой морфизмы можно складывать, а ядра и коядра существуют и обладают определёнными удобными свойствами. Пример, который стал прототипом абелевой категории — категория абелевых групп. Теория абелевых категорий была разработана Александром Гротендиком для объединения нескольких теорий когомологий. Класс абелевых категорий замкнут относительно нескольких категорных конструкций; например, категория цепных комплексов с элементами из абелевой категории и категория функторов...
Функтор — особый тип отображений между категориями. Его можно понимать как отображение, сохраняющее структуру. Функторы между малыми категориями являются морфизмами в категории малых категорий. Совокупность всех категорий не является категорией в обычном смысле, так как совокупность её объектов не является классом. Один из способов преодолеть подобные теоретико-множественные трудности — добавление в ZFC независимой от неё аксиомы о существовании недостижимых кардиналов.
В теории категорий, категория запятой — специальная конструкция, предоставляющая способ изучения морфизмов не как соотнесений объектов категории друг с другом, а как самостоятельных объектов. Название «категория запятой» появилось из-за первоначального (придуманного Ловером) обозначения, которое включало в себя знак запятой. Впоследствии стандартное обозначение изменилось из соображений удобства.
Тео́рия катего́рий — раздел математики, изучающий свойства отношений между математическими объектами, не зависящие от внутренней структуры объектов.
В теория категорий, замкнутая моноидальная категория — это категория, позволяющая брать тензорные произведения объектов, а также рассматривать объекты, соответствующие множествам морфизмов. Классический пример — категория множеств, в которой существует декартово произведение множеств, а также множество функций между двумя множествами. «Объект, соответствующий множеству морфизмов» обычно называют внутренним Hom.
В теории категорий, классификатор подобъектов — специальный объект Ω категории; интуитивно, подобъекты X соответствуют морфизмам из X в Ω. Способ, которым он «классифицирует» объекты можно описать как присвоение некоторым элементам X значения «истина».
В теории категорий моноидальные функторы — это функторы между моноидальными категориями, сохраняюющие моноидальную структуру, то есть умножение и тождественный элемент.
Подробнее: Моноидальный функтор
Категория называется полной в малом, если в ней любая малая диаграмма имеет предел. Двойственное понятие — кополная в малом категория, то есть та, в которой любая малая диаграмма имеет копредел. Аналогично определяется конечная полнота и вообще α-полнота для любого регулярного кардинала α. Из них всех наиболее употребимой является полнота в малом, поэтому категории, полные в малом, называют просто полными. Существование пределов вообще всех (не обязательно малых) диаграмм оказывается слишком сильным...
Элемента́рный то́пос — категория, в некотором смысле похожая на категорию множеств, основной предмет изучения теории топосов. Средствами элементарных топосов может быть описана аксиоматика как самой теории множеств, так и альтернативных теорий и логик, например, интуиционистская логика.
Инъективный объект — теоретико-категорное обобщение понятия инъективного модуля. Двойственное понятие — проективный объект.
В теории категорий
диаграмма — это категорный аналог индексированного множества в теории множеств. Основное различие в том, что в категории есть морфизмы, которые тоже нужно индексировать.
В теории категорий,
подфунктор — специальный тип функтора в Set, использующий определение подмножества.
Во многих областях математики полезную конструкцию часто можно рассматривать как «наиболее эффективное решение» определенной проблемы. Определение универсального свойства использует язык теории категорий, чтобы сделать это определение точным и изучать его теоретическими методами.
Подробнее: Универсальное свойство
Копроизведение (категорная сумма) семейства объектов — обобщение в теории категорий понятий дизъюнктного объединения множеств и топологических пространств и прямой суммы модулей или векторных пространств. Копроизведение семейства объектов — это «наиболее общий» объект, в который существует морфизм из каждого объекта семейства. Копроизведение объектов двойственно их произведению, то есть определение копроизведения можно получить из определения произведения обращением всех стрелок. Тем не менее, во...
Преде́л в теории категорий — понятие, обобщающее свойства таких конструкций, как произведение, декартов квадрат и обратный предел. Двойственное понятие копредела обобщает свойства таких конструкций, как дизъюнктное объединение, копроизведение, кодекартов квадрат и прямой предел.
В теории категорий
подобъект — это, грубо говоря, объект, который содержится в другом объекте категории. Определение обобщает более старые понятия подмножества в теории множеств и подгруппы в теории групп. Поскольку «настоящее» строение объектов в теории категорий не рассматривается, определение опирается на использование морфизмов, а не «элементов».
Экспоненциал — теоретико-категорный аналог множества функций в теории множеств. Категории, в которых существуют конечные пределы и экспоненциалы, называются декартово замкнутыми.
Категория абелевых групп (обозначается Ab) — категория, объекты которой — абелевы группы, а морфизмы — гомоморфизмы групп. Является прототипом абелевой категории., в действительности, любая малая абелева категория может быть вложена в Ab.
Аддитивная категория — предаддитивная категория C, в которой для любого конечного множества объектов A1, … , An существует произведение A1 × ⋯ × An в C, в том числе произведение пустого множества объектов — нулевой объект.
Эквивале́нтность катего́рий в теории категорий — отношение между категориями, показывающее, что две категории «по существу одинаковы». Установление эквивалентности свидетельствует о глубокой связи соответствующих математических концепций и позволяет «переносить» теоремы с одних структур на другие.
В теории категорий, представимый функтор — функтор специального типа из произвольной категории в категорию множеств. В некотором смысле, такие функторы задают представление категории в терминах множеств и функций.
Симплициальное множество (в ранних источниках — полусимплициальный компле́кс) — теоретико-категорная конструкция, обобщающая понятие симплициального комплекса и в определённом смысле моделирующая понятие топологического пространства с «хорошими» свойствами: теория гомотопий для симплициальных множеств эквивалентна классической теории гомотопий для топологических пространств. За счёт того, что является чисто алгебраической конструкцией, обеспечивает практически полный параллелизм с геометрическими...
Произведение двух или более объектов — это обобщение в теории категорий таких понятий, как декартово произведение множеств, прямое произведение групп и произведение топологических пространств. Произведение семейства объектов — это в некотором смысле самый общий объект, имеющий морфизмы во все объекты семейства.
В
алгебре (разделе математики), многие алгебраические структуры имеют тривиальные, то есть простейшие объекты. Как множества, они состоят из одного элемента, обозначаемого символом «0», а сам объект — как «{0}», или просто «0» смотря по контексту (например, в точных последовательностях). Объекты, соответствующие тривиальным случаям, важны для унификации рассуждений: например, удобнее сказать, что «решения уравнения T x = 0 всегда составляют линейное пространство», нежели делать оговорку «… либо множество...
В теории категорий
нормальный морфизм (соотв. конормальный морфизм) — это морфизм, являющийся ядром (соотв. коядром) некоторого морфизма. Нормальная категория — это категория, в которой каждый мономорфизм нормален. Соответственно, в конормальной категории каждый эпиморфизм конормален. Категория называется бинормальной, если она нормальна и конормальна одновременно.
Двенадцатикратный путь или двенадцать сценариев — это систематическая классификация 12 связанных перечислительных задач, касающихся двух конечных множеств, которые включают классические задачи подсчёта перестановок, сочетаний, мультимножеств и разбиений либо множества, либо числа. Идею классификации приписывают Джиану-Карло Роту, а название двенадцатикратный путь предложил Джоэл Спенсер. Название намекает, что используя те же подходы в 12 случаях, но с небольшими изменениями в условиях, мы получаем...
Диаграмма классов (англ. Static Structure diagram) — структурная диаграмма языка моделирования UML, демонстрирующая общую структуру иерархии классов системы, их коопераций, атрибутов (полей), методов, интерфейсов и взаимосвязей между ними. Широко применяется не только для документирования и визуализации, но также для конструирования посредством прямого или обратного проектирования.
У определённых функторов можно взять производные функторы чтобы получить другие функторы, тесно связанные с исходными. Данная операция является довольно абстрактной, но объединяет большое количество конструкций в математике.
Подробнее: Производный функтор
Отбор признаков , известный также как отбор переменных, отбор атрибутов или отбор поднабора переменных, это процесс отбора подмножества значимых признаков (переменных зависимых и независимых) для использования в построении модели. Техники отбора признаков используются по четырём причинам...
Задача классифика́ции — задача, в которой имеется множество объектов (ситуаций), разделённых некоторым образом на классы. Задано конечное множество объектов, для которых известно, к каким классам они относятся. Это множество называется выборкой. Классовая принадлежность остальных объектов неизвестна. Требуется построить алгоритм, способный классифицировать (см. ниже) произвольный объект из исходного множества.
Признаковое описание объекта (англ. feature vector) — это вектор, который составлен из значений, соответствующих некоторому набору признаков для данного объекта. Значения признаков могут быть различного, не обязательно числового, типа. Является одним из самых распространённых в машинном обучении способов ввода данных.
Решётка (ранее использовался термин структура) — частично упорядоченное множество, в котором каждое двухэлементное подмножество имеет как точную верхнюю (sup), так и точную нижнюю (inf) грани. Отсюда вытекает существование этих граней для любых непустых конечных подмножеств.
Коуравнитель — теоретико-категорное обобщение понятия фактора по отношению эквивалентности. Это понятие двойственно к понятию уравнителя, отсюда и название.
В теории категорий функторы между двумя зафиксированными категориями образуют категорию, морфизмы в которой — естественные преобразования.
Подробнее: Категория функторов
Двойственность в теории категорий — соотношение между свойствами категории C и так называемыми двойственными свойствами двойственной категории Cop. Взяв утверждение, касающееся категории C и поменяв местами образ и прообраз каждого морфизма, так же как и порядок применения морфизмов, получим двойственное утверждение, касающееся категории Cop. Принцип двойственности состоит в том, что истинные утверждения после такой операции переходят в истинные, а ложные в ложные.
В теории категорий, понятие элемента (или точки) обобщает обычное понятие элемента множества на объект произвольной категории. Иногда оно позволяет переформулировать свойства морфизмов (например, свойство мономорфизма), которые обычно описываются при помощи универсальных свойств в более привычных терминах действия отображения на элементах. Этот подход к теории категорий (и особенно его использование в лемме Йонеды) был предложен Гротендиком.
Подробнее: Элемент (теория категорий)
Мно́жество — одно из ключевых понятий математики; это математический объект, сам являющийся набором, совокупностью, собранием каких-либо объектов, которые называются элементами этого множества и обладают общим для всех их характеристическим свойством. Изучением общих свойств множеств занимаются теория множеств, а также смежные разделы математики и математической логики.
Функторы Ext — производные функторы функтора Hom. Они впервые появились в гомологической алгебре, где они играют центральную роль, например, в теореме об универсальных коэффициентах, но теперь они используются во многих разных областях математики.
Подробнее: Функтор Ext
Коммутант в общей алгебре — подсистема алгебр, содержащих групповую структуру (подгруппа, подкольцо, в наиболее общем случае — подгруппа мультиоператорной группы), показывающая степень некоммутативности групповой операции.
Категория произведения — категория, получаемая из исходных категорий посредством их произведения — операции, обобщающей понятие декартова произведения множеств.
В теории категорий есте́ственное преобразова́ние предоставляет способ перевести один функтор в другой, сохраняя внутреннюю структуру (например, композиции морфизмов). Поэтому естественное преобразование можно понимать как «морфизм функторов». Эта интуиция может быть строго формализована в определении категории функторов. Естественные преобразования — наиболее базовое определение в теории категорий наряду с функторами, поэтому оно появляется в большинстве её приложений.
Подробнее: Естественное преобразование
Система Штейнера (названа именем Якоба Штейнера) — вариант блок-схем, точнее, t-схемы с λ = 1 и t ≥ 2.