Связанные понятия
У определённых функторов можно взять производные функторы чтобы получить другие функторы, тесно связанные с исходными. Данная операция является довольно абстрактной, но объединяет большое количество конструкций в математике.
Подробнее: Производный функтор
Теоремы об изоморфизме в алгебре — ряд теорем, связывающих понятия фактора, гомоморфизма и вложенного объекта. Утверждением теорем является изоморфизм некоторой пары групп, колец, модулей, линейных пространств, алгебр Ли или прочих алгебраических структур (в зависимости от области применения). Обычно насчитывают три теоремы об изоморфизме, называемые Первой (также основная теорема о гомоморфизме), Второй и Третьей. Хотя подобные теоремы достаточно легко следуют из определения фактора и честь их открытия...
Систе́ма корне́й (корнева́я систе́ма) в математике — конфигурация векторов в евклидовом пространстве, удовлетворяющая определённым геометрическим свойствам.
Абелева категория — категория, в которой морфизмы можно складывать, а ядра и коядра существуют и обладают определёнными удобными свойствами. Пример, который стал прототипом абелевой категории — категория абелевых групп. Теория абелевых категорий была разработана Александром Гротендиком для объединения нескольких теорий когомологий. Класс абелевых категорий замкнут относительно нескольких категорных конструкций; например, категория цепных комплексов с элементами из абелевой категории и категория функторов...
Дифференцирование в алгебре — операция, обобщающая свойства различных классических производных и позволяющая ввести дифференциально-геометрические идеи в алгебраическую геометрию. Изначально это понятие было введено для исследования интегрируемости выражений в элементарных функциях алгебраическими методами.
В математике свободная абелева группа (свободный Z-модуль) — это абелева группа, имеющая базис, то есть такое подмножество элементов группы, что для любого её элемента существует единственное его представление в виде линейной комбинации базисных элементов с целыми коэффициентами, из которых только конечное число являются ненулевыми. Элементы свободной абелевой группы с базисом B называют также формальными суммами над B. Свободные абелевы группы и формальные суммы используются в алгебраической топологии...
Проекти́вный мо́дуль — одно из основных понятий гомологической алгебры. С точки зрения теории категорий, проективные модули являются частным случаем проективных объектов.
В математике (особенно в теории категорий), коммутативная диаграмма — изображаемая в наглядном виде структура наподобие графа, вершинами которой служат объекты определённой категории, а рёбрами — морфизмы. Коммутативность означает, что для любых выбранных начального и конечного объекта для соединяющих их ориентированных путей композиция соответствующих пути морфизмов не будет зависеть от выбора пути.
Подробнее: Коммутативная диаграмма
В общей алгебре, термин кручение относится к элементам группы, имеющим конечный порядок, или к элементам модуля, аннулируемым регулярным элементом кольца.
Подробнее: Кручение (алгебра)
Касательное пространство Зарисского — конструкция в алгебраической геометрии, позволяющая построить касательное пространство в точке алгебраического многообразия. Эта конструкция использует не методы дифференциальной геометрии, а только методы общей, и, в более конкретных ситуациях, линейной алгебры.
Двойственное пространство (иногда сопряжённое пространство) — пространство линейных функционалов на заданном векторном пространстве.
Произведение топологических пространств — это топологическое пространство, полученное, как множество, декартовым произведением исходных топологических пространств, и снабжённое естественной топологией, называемой топологией произведения или тихоновской топологией. Слово «естественная» здесь употребляется в смысле теории категорий и означает, что эта топология удовлетворяет некоторому универсальному свойству.
Расшире́ние Галуа ́ — алгебраическое расширение поля E/K, являющееся нормальным и сепарабельным. При этих условиях E будет иметь наибольшее количество автоморфизмов над K (если E конечно, то количество автоморфизмов также конечно и равно степени расширения ).
Внутренний автоморфизм — это вид автоморфизма группы, определённый в терминах фиксированного элемента группы, называемого сопрягающим элементом. Формально, если G — группа, а a — элемент группы G, то внутренний автоморфизм, определённый элементом a — это отображение f из G в себя, определённое для всех x из G по формуле...
Коммутант в общей алгебре — подсистема алгебр, содержащих групповую структуру (подгруппа, подкольцо, в наиболее общем случае — подгруппа мультиоператорной группы), показывающая степень некоммутативности групповой операции.
Плоский модуль над кольцом R — это такой модуль, что тензорное умножение на этот модуль сохраняет точные последовательности. Модуль называется строго плоским, если последовательность тензорных произведений точна тогда и только тогда, когда точна исходная последовательность.
Конкретная категория в математике — категория, снабжённая строгим функтором в категорию множеств. Благодаря этому функтору можно оперировать с объектами такой категории образом, сходным с работой с множествами с дополнительной структурой, а морфизмы представлять как функции, сохраняющие дополнительную структуру. Многие категории имеют очевидную интерпретацию конкретных категорий, например, категория групп, категория топологических пространств и собственно категория множеств. С другой стороны, существуют...
Инволюция (от лат. involutio — свёртывание, завиток) — преобразование, которое является обратным самому себе.
Катего́рия мно́жеств — категория, объекты которой — множества, а морфизмы между множествами A и B — все функции из A в B. Обозначается Set. В аксиоматике Цермело — Френкеля «множества всех множеств» не существует, а работать с понятием класса не очень удобно; для этой проблемы было предложено несколько различных решений.
Группа классов идеалов дедекиндова кольца — это, грубо говоря, группа, позволяющая сказать, насколько сильно в данном кольце нарушается свойство факториальности. Эта группа тривиальна тогда и только тогда, когда дедекиндово кольцо является факториальным. Свойства дедекиндова кольца, касающиеся умножения его элементов, тесно связаны с устройством этой группы.
В математике централизатор подмножества S группы G — это множество элементов G, которые коммутируют с каждым элементом S, а нормализатор S — это множество элементов G, которые коммутируют с S «в целом». Централизатор и нормализатор S являются подгруппами G и могут пролить свет на структуру G.
В математическом анализе, и прилегающих разделах математики, ограниченное множество — множество, которое в определенном смысле имеет конечный размер. Базовым является понятие ограниченности числового множества, которое обобщается на случай произвольного метрического пространства, а также на случай произвольного частично упорядоченного множества. Понятие ограниченности множества не имеет смысла в общих топологических пространствах, без метрики.
Подробнее: Ограниченное множество
Окольцованное пространство — топологическое пространство, каждому открытому множеству которого сопоставлено коммутативное кольцо «функций» на этом множестве. Окольцованные пространства, в частности, используются при определении схем.
Одноро́дный многочле́н — многочлен, все одночлены которого имеют одинаковую полную степень. Любая алгебраическая форма является однородным многочленом. Квадратичная форма задается однородным многочленом второй степени, бинарная форма - однородным многочленом любой степени от двух переменных.
Полукольцо — общеалгебраическая структура, похожая на кольцо, но без требования существования противоположного по сложению элемента.
Обра́тный элеме́нт — термин в общей алгебре, обобщающий понятия обратного числа (для умножения) и противоположного числа (для сложения).
Цепно́й компле́кс и двойственное понятие коцепной комплекс — основные понятия гомологической алгебры.
Упорядоченное поле — алгебраическое поле, для всех элементов которого определён линейный порядок, согласованный с операциями поля. Наиболее практически важными примерами являются поля рациональных и вещественных чисел.
Коне́чноме́рное простра́нство — это векторное пространство, в котором имеется конечный базис — порождающая (полная) линейно независимая система векторов. Другими словами, в таком пространстве существует конечная линейно независимая система векторов, линейной комбинацией которых можно представить любой вектор данного пространства.
Свобо́дный мо́дуль — модуль F над кольцом R (как правило, считаемым ассоциативным c единичным элементом), если он либо является нулевым, либо обладает базисом, то есть непустой системой S элементов e1,…ei…, которая является линейно независимой и порождает F. Само кольцо R, рассматриваемое как левый модуль над собой, очевидно обладает базисом, состоящим из одного единичного элемента кольца, а каждый модуль с конечным базисом из n элементов изоморфен прямой сумме Rn колец R, рассматриваемых как модули...
Компа́ктный опера́тор — понятие функционального анализа. Компактные операторы естественно возникают при изучении интегральных уравнений, а их свойства схожи со свойствами операторов в конечномерных пространствах. Компактные операторы также часто называют вполне непрерывными.
В математике, когерентные пучки — это класс пучков, тесно связанных с геометрическими свойствами пространства-носителя. В определении когерентного пучка используется пучок колец, который хранит эту геометрическую информацию.
Подробнее: Когерентный пучок
Алгебраическая комбинаторика — это область математики, использующая методы общей алгебры, в особенности теории групп и теории представлений, в различных комбинаторных контекстах и, наоборот, применяющая комбинаторные техники к задачам в алгебре.
Евклидово кольцо — общеалгебраическое кольцо, в котором существует аналог алгоритма Евклида.
Универсальная обёртывающая алгебра — ассоциативная алгебра, которая может быть построена для любой алгебры Ли, перенимающая многие важные свойства исходной алгебры, что позволяет применить более широкие средства для изучения исходной алгебры.
Единичный круг — круг радиуса 1 на евклидовой плоскости (рассматриваемый обычно на комплексной плоскости); «идиоматическая» область в комплексном анализе.
Факторкольцо ́ — общеалгебраическая конструкция, позволяющая распространить на случай колец конструкцию факторгруппы. Любое кольцо является группой по сложению, поэтому можно рассмотреть её подгруппу и взять факторгруппу. Однако для того, чтобы на этой факторгруппе можно было корректно определить умножение, необходимо, чтобы исходная подгруппа была замкнута относительно умножения на произвольные элементы кольца, то есть являлась идеалом.
Локальные кольца — кольца, которые относительно просты и позволяют описывать «локальное поведение» функций на алгебраическом многообразии или обычном многообразии. Раздел коммутативной алгебры, изучающий локальные кольца и модули над ними, называется локальной алгеброй.
Подробнее: Локальное кольцо
В линейной алгебре линейная зависимость — это свойство, которое может иметь подмножество линейного пространства. При линейной зависимости существует нетривиальная линейная комбинация элементов этого множества, равная нулевому элементу. При отсутствии такой комбинации, то есть, когда коэффициенты единственной такой линейной комбинации равны нулю, множество называется линейно независимым.
Сепара́бельное пространство (от лат. separabilis — отделимый) — топологическое пространство, в котором можно выделить счётное всюду плотное подмножество.
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Во многих областях математики полезную конструкцию часто можно рассматривать как «наиболее эффективное решение» определенной проблемы. Определение универсального свойства использует язык теории категорий, чтобы сделать это определение точным и изучать его теоретическими методами.
Подробнее: Универсальное свойство
Двойственность в теории категорий — соотношение между свойствами категории C и так называемыми двойственными свойствами двойственной категории Cop. Взяв утверждение, касающееся категории C и поменяв местами образ и прообраз каждого морфизма, так же как и порядок применения морфизмов, получим двойственное утверждение, касающееся категории Cop. Принцип двойственности состоит в том, что истинные утверждения после такой операции переходят в истинные, а ложные в ложные.
Произведение двух или более объектов — это обобщение в теории категорий таких понятий, как декартово произведение множеств, прямое произведение групп и произведение топологических пространств. Произведение семейства объектов — это в некотором смысле самый общий объект, имеющий морфизмы во все объекты семейства.
Коалгебра — математическая структура, которая двойственна (в смысле обращения стрелок) к ассоциативной алгебре с единицей. Аксиомы унитарной ассоциативной алгебры могут быть сформулированы в терминах коммутативных диаграмм. Аксиомы коалгебры получаются путём обращения стрелок. Каждая коалгебра c дуальностью (векторного пространства) порождает алгебру, но не наоборот. В конечномерном случае дуальность есть в обоих направлениях. Коалгебры встречаются в разных случаях (например, в универсальных обёртывающих...
Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.