Связанные понятия
Липи́ды (от др.-греч. λίπος — жир) — обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот, сложных — из спирта, высокомолекулярных жирных кислот и других компонентов. Содержатся во всех живых клетках.
Фосфатидилхоли́н ы ― группа фосфолипидов, содержащих холин. Также входят в группу лецитинов. Фосфатидилхолины одни из самых распространенных молекул клеточных мембран.
Трипсин — фермент класса гидролаз, расщепляющий пептиды и белки; обладает также эстеразной (гидролиз сложных эфиров) активностью.
Олигосахариды — углеводы, содержащие от 2 до 10 моносахаридных остатков (от греч. ὀλίγος — немногий).
Биоти́н (кофермент R, иногда называют витамин Н, витамин B7) — водорастворимый витамин группы В. Молекула биотина состоит из тетрагидроимидазольного и тетрагидротиофенового кольца, в тетрагидротиофеновом кольце один из атомов водорода замещён на валериановую кислоту. Биотин является кофактором в метаболизме жирных кислот, лейцина и в процессе глюконеогенеза.
Упоминания в литературе
В нуклеиновых кислотах, многих ферментах, различных
фосфолипидах и других органических соединениях содержится фосфор, который не вступает в непосредственное соединение с углеродом, но образует связи через атомы кислорода. В процессе окислительных реакций высвобождается энергия, аккумулированная в цитоплазме клеток. При этом большую роль в энергетическом обмене в клетке играют АТФ– и АДФ-кислоты. Кроме того, фосфор входит в состав нуклеопротеидов, фосфолипидов, простетических групп большинства двухкомпонентных ферментов, являющихся важнейшими соединениями цитоплазмы.
Мембраны представляют собой двумерные жидкокристаллические растворы глобулярных белков в липидах. Структурную основу мембран составляют липиды, среди которых преобладают
фосфолипиды (например, лецитин), а в мембранах пластид – гликолипиды. Белки в мембранах выполняют определенные функции: они являются, например, ферментами или транспортными белками. Кроме того, в состав мембран входят стерины (у животных а основном холестерин), гликопротеиды и некоторые неорганические соли.
Перекисное окисление липидов в организме было обнаружено уже давно, и причины его разнообразны. Так, например, под влиянием различных метаболитов, образующихся в процессе жизнедеятельности органов и тканей может увеличиваться концентрация свободных радикалов, которые, в свою очередь, вступая с липопротеидами в реакцию, патогенно изменяют их. Известно также что организм человека имеет защиту от данного явления; и это большая группа соединений, оказывающая блокирующий эффект, на процессы свободно радикального окисления органических веществ в клетке, т. е. антиоксиданты. Антиоксиданты тормозят переход обычных ЛПНП в модифицированные, угнетая химическую реакцию окисления липидов. Известно, что к эндогенным антиоксидантом относят некоторые аминокислоты (цистеин, метионин, глутатион), белки, содержащие сульфгидрильные группы,
фосфолипиды (лецитин, кефалин); а также многие витаминные препараты (токоферол, рутин, акскорбиновая кислота).
Липиды. Количественное содержание липидов (триглицеридов жирных кислот) в мышечной ткани зависит от упитанности животного. Их качественный состав также различен у разных видов животных. В основном в состав молекулы внутримышечных липидов входят высокомолекулярные жирные кислоты. Уровень
фосфолипидов довольно постоянен и колеблется в пределах 0,5-0,8 % в зависимости от вида и категории мяса. Фосфолипиды представлены лецитинами, кефалинами и другими соединениями. Содержание общего холестерина составляет 50-70 мг%, а этерифицированного холестерина – 3-5 мг%.
Существенную роль в превращении липидов в организме играет соотношение различных липидов в пище. От количества ненасыщенных жирных кислот и
фосфолипидов зависит не только всасывание жирорастворимых витаминов, но и растворимость и стабильность холестерина в жидких тканях организма (плазме крови, лимфе) и желчевыводящих путях. Растительные масла содержат много фосфолипидов и полиненасыщенных кислот, препятствуют избыточному накоплению холестерина, его отложению в сосудах и других тканях и способствует его выведению из организма. Наиболее сильное влияние на эти процессы оказывают кукурузное, сафлоровое, хлопковое и подсолнечное масла. Потребление ненасыщенных жирных кислот, имеющихся в растительных маслах, оказывает благоприятное воздействие на синтез эндогенных фосфолипидов, субстратами которых они являются, и на образование других веществ, для которых требуются полиненасыщенные жирные кислоты. Являясь разобщителями окислительного фосфорилирования, ненасыщенные жирные кислоты ускоряют процессы окисления в митохондриях тканей и тем самым регулируют избыточное отложение триглицеринов (жиров). Существенное влияние на биосинтез фосфолипидов и триглицеринов оказывают липотропные факторы. Они облегчают биосинтез фосфолипидов. Их отсутствие в пище способствует образованию триглицеринов. Голодание вызывает мобилизацию триглицеринов из жировой ткани и угнетает биогенный синтез холестерина.
Связанные понятия (продолжение)
Глутатион (2-амино-5-{амино}-5-оксопентаноевая кислота, англ. glutathione, GSH) — это трипептид γ-глутамилцистеинилглицин. Глутатион содержит необычную пептидную связь между аминогруппой цистеина и карбоксильной группой боковой цепи глутамата. Значение глутатиона в клетке определяется его антиоксидантными свойствами. Фактически глутатион не только защищает клетку от токсичных свободных радикалов, но и в целом определяет окислительно-восстановительные характеристики внутриклеточной среды.
Липаза (англ. Lipase), иногда Стеапсин (англ. steapsin) — водорастворимый фермент, который катализирует гидролиз нерастворимых эстеров-липидных субстратов, помогая переваривать, растворять и фракционировать жиры.
Гликопротеи́ны (устар. гликопротеиды) — это двухкомпонентные белки, в которых белковая (пептидная) часть молекулы ковалентно соединена с одной или несколькими группами гетероолигосахаридов. Кроме гликопротеинов существуют также протеогликаны и гликозаминогликаны.
Гликолипиды — (от греч. γλυκός (glykos) — сладкий и λίπος (lípos) — жир) сложные липиды, образующиеся в результате соединения липидов с углеводами. В молекулах гликолипидов есть полярные «головы» (углевод) и неполярные «хвосты» (остатки жирных кислот). Благодаря этому гликолипиды (вместе с фосфолипидами) входят в состав клеточных мембран.
Ферме́нты (от лат. fermentum) — обычно достаточно сложные молекулы белка, рибосом или их комплексы, ускоряющие химические реакции в живых системах. Каждый фермент, свернутый в определённую структуру, ускоряет соответствующую химическую реакцию: реагенты в такой реакции называются субстратами, а получающиеся вещества — продуктами. Ферменты специфичны к субстратам: АТФ-аза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу.Ферментативная активность может регулироваться...
Гидролазы (КФ3) — это класс ферментов, катализирующий гидролиз ковалентной связи. Общий вид реакции, катализируемой гидролазой, выглядит следующим образом...
Дисахариды (от др. греч. δύο — два и σάκχαρον — сахар) — органические соединения, одна из основных групп углеводов; являются частным случаем олигосахаридов.
Жирные кислоты — алифатические одноосновные карбоновые кислоты с открытой цепью, содержащиеся в этерифицированной форме в жирах, маслах и восках растительного и животного происхождения. Жирные кислоты, как правило, содержат неразветвленную цепь из чётного числа атомов углерода (от 4 до 24, включая карбоксильный) и могут быть как насыщенными, так и ненасыщенными.
Пепти́ды (греч. πεπτος «питательный») — семейство веществ, молекулы которых построены из двух и более остатков аминокислот, соединённых в цепь пептидными (амидными) связями —C(O)NH—. Обычно подразумеваются пептиды, состоящие из α-аминокислот, однако термин не исключает пептидов, полученных из любых других аминокарбоновых кислот.
Аденозинмонофосфат (AМФ, adenosine monophosphate) 5'-аденилат, это эфир фосфорной кислоты и аденозинового нуклеозида. Молекула АМФ содержит фосфатную группу, сахар рибозу и азотистое основание аденин (A). АМФ играет важную роль во многих клеточных процессах обмена веществ. АМФ также компонент синтеза РНК.
Липоевая кислота (липоат) — сероорганическое соединение, один из энантиомеров которого является важным коферментом для многих ферментативных комплексов.
Уроновые кислоты (глюкуроновые кислоты) — монокарбоновые кислоты общей формулы OHCnCOOH, формально являющиеся продуктами окисления терминальной гидроксиметильной группы альдоз в карбоксильную группу. Входят в состав биополимеров как растительного, так и животного происхождения.
Амфифильность (иначе дифильность) — свойство молекул веществ (как правило, органических), обладающих одновременно лиофильными (в частности, гидрофильными) и лиофобными (гидрофобными) свойствами.
Протеа́зы, протеиназы, протеолитические ферменты — ферменты из класса гидролаз, которые расщепляют пептидную связь между аминокислотами в белках. Кроме них, пептидную связь расщепляют также протеасомы.
Подробнее: Протеаза
Биосинтез — процесс синтеза природных органических соединений живыми организмами. Путь биосинтезного соединения — это приводящая к образованию этого соединения последовательность реакций, как правило, ферментативных (генетически детерминированных), но изредка встречаются и спонтанные реакции, обходящиеся без ферментативного катализа. Например, в процессе биосинтеза лейцина одна из реакций является спонтанной и протекает без участия фермента. Биосинтез одних и тех же соединений может идти различными...
Амила́за (др.-греч. ἄμυλον — крахмал) — фермент, гликозил-гидролаза, расщепляющий крахмал до олигосахаридов, относится к ферментам пищеварения. В истории амилаза стала первым открытым ферментом, когда французский химик Ансельм Пайен описал в 1833 году диастазу — фермент (на самом деле, смесь ферментов), расщепляющий крахмал до мальтозы. Согласно другим данным, амилазу в 1814 году открыл академик петербургской Академии наук К. С. Кирхгоф. Именно амилаза приводит к появлению сладковатого вкуса при...
Жёлчные кислоты — производные холановой кислоты С23Н39СООН, отличающиеся тем, что к её кольцевой структуре присоединены гидроксильные группы.
Полисахариды — высокомолекулярные углеводы, полимеры моносахаридов (гликаны). Молекулы полисахаридов представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды. У живых организмов выполняют резервные (крахмал, гликоген), структурные (целлюлоза, хитин) и другие функции.
Аминосахара ́ — производные углеводов, образованные замещением одной или нескольких гидроксильных групп на аминогруппу.
Оксидазы — окислительные ферменты класса оксидоредуктаз. В настоящее время найдено очень много разнообразных окислительных ферментов, как растительного, так и животного происхождения. В живых клетках оксидазы служат катализаторами окислительно-восстановительных реакций и классифицируются на металлоферменты и флавопротеиды.
Гликозидная связь (англ. Glycosidic bond) — это тип ковалентной связи, которая соединяет молекулу сахара с другой молекулой, часто с другим сахаром. Гликозидная связь образуется между полуацетальной группой сахара (или производной сахара) и гидроксильной группой органического соединения, например, спирта.Связь между аминогруппой или другой группой, содержащей атом азота, с сахаром, часто также называется гликозидной связью, хотя IUPAC этого и не рекомендует. Например, связь между сахаром и азотистым...
Простетическая группа — небелковый (и не производный от аминокислот) компонент, ковалентно связанный с белком, который выполняет важную роль в биологической активности соответствующего белка. Простетические группы могут быть органическими (витамины, углеводы, липиды) или неорганическими (например, ионы металлов).
Коферменты , или коэнзимы — малые молекулы небелковой природы, специфически соединяющиеся с соответствующими белками, называемыми апоферментами, и играющие роль активного центра или простетической группы молекулы фермента.
Лектины (от лат. legere — собирать) — белки и гликопротеины, обладающие способностью высокоспецифично связывать остатки углеводов на поверхности клеток, в частности, вызывая их агглютинацию. Лектины нередко участвуют в клеточном распознавании, например, некоторые патогенные микроорганизмы используют лектины для прикрепления к клеткам поражённого организма. Первоначально лектины были выделены из семян растений, однако они найдены у большинства живых организмов. Лектины могут вызывать агглютинацию...
Альфа-амилаза (α-Амилаза, 1,4-α-d-глюкан-глюканогидролаза, гликогеназа; шифр КФ — 3.2.1.1) является кальций-зависимым ферментом. К этому типу относятся амилаза слюнных желез и амилаза поджелудочной железы. Она способна гидролизовать полисахаридную цепь крахмала и других длинноцепочечных углеводов в любом месте. Таким образом, процесс гидролиза ускоряется и приводит к образованию олигосахаридов различной длины. У животных α-амилаза является основным пищеварительным ферментом. Активность α-амилазы...
Субстра́т в биохимии — исходное вещество, преобразуемое ферментом в результате специфического фермент-субстратного взаимодействия в один или несколько конечных продуктов. После окончания катализа и высвобождения продукта реакции активный центр фермента снова становится вакантным и может связывать другие молекулы субстрата.
Галакто́за (от греческого корня γάλακτ-, «молоко») — один из простых сахаров, моносахарид из группы гексоз. Отличается от глюкозы пространственным расположением водородной и гидроксильной групп у 4-го углеродного атома. Содержится в животных и растительных организмах, в том числе в некоторых микроорганизмах. Входит в состав дисахаридов — лактозы и лактулозы. При окислении образует галактоновую, галактуроновую и слизевую кислоты. L-галактоза входит в состав полисахаридов красных водорослей. D-галактоза...
Гексокина́за (АТФ-зависимая D-гексоза-6-фосфотрансфераза) (КФ 2.7.1.1) — цитоплазматический фермент класса трансфераз, подкласса фосфотрансфераз, первый фермент пути гликолиза. В отличие от глюкокиназы, константа Михаэлиса гексокиназы равна 0,1 ммоль/л, следовательно, гексокиназа, локализованная в клетках большинства тканей организма человека, буквально «вылавливает» глюкозу из плазмы крови, тогда как глюкокиназа катализирует реакцию фосфорилирования глюкозы лишь при высоких её концентрациях. Соответственно...
Эстеразы — ферменты, катализирующие в клетках гидролитическое расщепление сложных эфиров (англ. esters) на спирты и кислоты при участии молекул воды (гидролиз).
Подробнее: Эстераза
Сиаловые кислоты (от др.-греч. σίαλον «слюна») — общее название N- и O-замещённых производных нейраминовой кислоты, моносахарида с девятиатомной углеродной цепью. Наиболее распространённого представителя этого класса — N-ацетилнейраминовую кислоту (НАНК, Neu5Ac) — также часто называют сиаловой кислотой. Широко распространены в тканях животных, однако встречаются также у растений, грибов и бактерий. Впервые были обнаружены в 1930-е годы Гуннаром Бликсом, Эрнстом Кленком и другими в качестве преобладающих...
Физиологические условия — термин биологии, биохимии и медицины, обозначающий условия внешней или внутренней среды, которые могут встречаться в природе для данного организма или группы клеток в противовес искусственным, лабораторным условиям. Для большинства земных организмов под такими условиями обычно подразумевают температурный интервал 20-40 °С, атмосферное давление в одну атмосферу, pH 6,5-8, концентрацию глюкозы 1-20 мМ, атмосферную концентрацию кислорода и углекислого газа, физиологическую...
Гексозы , C6H12O6, простые сахара — моносахариды, содержащие 6 атомов углерода; в природе встречаются в свободном виде — в виде глюкозидов входят в состав ди- и полисахаридов, эфиров фосфорной кислоты, гликопротеинов.
Альдолаза (фруктозобисфосфат-(фруктозодифосфат)-альдолаза) — фермент, катализирующий превращение фруктозо-1,6-дифосфата в дигидроксиацетонфосфат и глицеральдегид-3-фосфат в процессе гликолиза. Фермент играет важнейшую роль в энергетическом обмене.
Аминокисло́ты (аминокарбо́новые кисло́ты; АМК) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Основные химические элементы аминокислот - это углерод (C), водород (H), кислород (O), и азот (N), хотя другие элементы также встречаются в радикале определенных аминокислот. Известны около 500 встречающихся в природе аминокислот (хотя только 20 используются в генетическом коде).
Глутамин (также Глютамин) (2-аминопентанамид-5-овая кислота) — одна из 20 стандартных аминокислот, входящих в состав белка. Глутамин полярен, не заряжен и является амидом моноаминодикарбоновой глутаминовой кислоты, образуясь из неё в результате прямого аминирования под воздействием глутаминсинтетазы.
Никотинами́д (ниацинами́д, nicotinamide) — амид никотиновой кислоты, витаминное средство.
Аспарагиновая кислота (аминоянтарная кислота, аспартат, аминобутандиовая кислота, 2-аминобутандиовая кислота) — алифатическая аминокислота, одна из 20 протеиногенных аминокислот организма. Встречается во всех организмах в свободном виде и в составе белков. Кроме того, выполняет роль нейромедиатора в центральной нервной системе.
Липо́лиз — метаболический процесс расщепления жиров на составляющие их жирные кислоты под действием липазы.
Цикл мочевины или орнитиновый цикл (цикл Кребса-Гензелейта) — последовательность биохимических реакций млекопитающих и некоторых рыб, в результате которой азотсодержащие продукты распада преобразуются в мочевину, которая в свою очередь выделяется почками. В большинстве случаев таким образом происходит превращение аммиака. У птиц и рептилий конечным продуктом выделения является не мочевина, а мочевая кислота. Земноводные и большинство рыб не преобразуют аммиак в другие соединения, поскольку вследствие...
Стерины , стеролы (от холестерин, -ол) — природные органические соединения, производные стероидов, содержащие гидроксильную группу в положении 3. В основе структуры стеринов лежит насыщенный тетрациклический углеводород стеран.
Цитохромы (гемопротеины) — это крупные мембранные белки (за исключением наиболее распространённого цитохрома c, который является маленьким глобулярным белком), которые содержат ковалентно связанный гем, расположенный во внутреннем кармане, образованном аминокислотными остатками.
Пурин — простейший представитель имидазопиримидинов. Бесцветные кристаллы, хорошо растворимые в воде, горячем этаноле и бензоле, плохо растворимые в диэтиловом эфире, ацетоне и хлороформе.
Глюко́за , или виноградный сахар, или декстроза (D-глюкоза), C6H12O6 — органическое соединение, моносахарид (шестиатомный гидроксиальдегид, гексоза), один из самых распространённых источников энергии в живых организмах на планете. Встречается в соке многих фруктов и ягод, в том числе и винограда, от чего и произошло название этого вида сахара. Глюкозное звено входит в состав полисахаридов (целлюлоза, крахмал, гликоген) и ряда дисахаридов (мальтозы, лактозы и сахарозы), которые, например, в пищеварительном...
Инози́н (англ. inosine) — это нуклеозид, состоящий из гипоксантина, связанного с остатком рибозы (рибофуранозы) посредством β-N9-гликозидной связи. Монофосфат инозина окисляется ферментом инозинмонофосфатдегидрогеназой, образуя монофосфат ксантина, ключевой предшественник в метаболизме пуринов. Инозин является компонентом тРНК и необходим для трансляции в случае неоднозначных пар оснований.
Аденозиндифосфат (АДФ) — нуклеотид, состоящий из аденина, рибозы и двух остатков фосфорной кислоты. АДФ образуется в результате переноса концевой фосфатной группы Аденозинтрифосфата (АТФ). АДФ участвует в энергетическом обмене во всех живых организмах, из него образуется АТФ путём фосфорилирования с затратами энергии (субстратное фосфорилирование, окислительное фосфорилирование, или фотофосфорилирование при фотосинтезе)...
Упоминания в литературе (продолжение)
Клетки печени постоянно вырабатывают жир. Печень служит местом переработки нейтральных жиров. Из жировых депо током крови они доставляются в печень, где используются на образование
фосфолипидов при наличии азотистых оснований и активной фосфорной кислоты. Из жирных кислот, глицерина, фосфорной кислоты, холина и других оснований печень синтезирует составные части клеточных мембран – фосфолипиды.
Жиры (на научном языке – липиды) делятся на нейтральные жиры и жироподобные вещества. К последним относятся
фосфолипиды и стерины. В составе нейтральных жиров выделяют глицерин и жирные кислоты. Жирные кислоты подразделяют на насыщенные и ненасыщенные. Отличительная особенность жиров состоит в том, что они обладают высокой энергоценностью. Так, 1 г жира при окислении дает организму 37,7 кДж (это 9 ккал) и при этом обеспечивает примерно 33 % от суточной нормы энергетической ценности рациона. Жиры принимают участие в обменных процессах организма, являются составной частью клеток и клеточных структур. С жирами в организм поступают и усваиваются такие необходимые для нормальной жизнедеятельности организма вещества, как витамины А, D, Е, лецитин, минеральные вещества и незаменимые жирные кислоты. Жировые ткани служат резервом энергетического материала, причем жиры могут образовываться из углеводов и белков, но в полной мере ими не заменяются.
Липиды природных мембран в основном представлены
фосфолипидами , у которых одна или две жирнокислые цепи этерифицированы либо глицеролом (трехатомный спирт), либо сфингозином (аминоспиртом), а к третьему атому углерода присоединена фосфатная группа, с которой в свою очередь связана полярная группа, например холин.
В сыворотке крови неэстерифицированные жирные кислоты составляют 5—10 % по сравнению с высшими жирными кислотами, которые входят в состав стероидов, триглицеридов,
фосфолипидов . Большая часть свободных жирных кислот выделяется в кровяное русло из жировой ткани, где они образуются вследствие расщепления триглицеридов. В печени неэстерифицированные жирные кислоты участвуют в формировании молекул триглицеридов, эфиров холестерина, фосфолипидов и окисляются. Неэстерифицированные жирные кислоты – это транспортная форма жирных кислот, поэтому их определение позволяет оценить активность мобилизации жиров из жировых депо.
Биосинтез липидов осуществляется за счет ацетилпереносящих белков. При этом ацетильный остаток переходит на глицерофосфат с образованием фосфатидных кислот, а они уже вступают в химические реакции с образованием сложных эфиров со спиртами. Эти превращения лежат в основе синтеза
фосфолипидов .
– Структурная функция:
фосфолипиды и холестерин – основные компоненты клеточных мембран. В нервной системе находится большое количество сфингомиелинов: эти вещества действуют как изоляторы в миелиновой оболочке, окружающей нервные волокна.
Липиды (жиры) – органические вещества, нерастворимые в воде (гидрофобные), но хорошо растворяющиеся в органических растворителях (хлороформе, бензине и др.). Их молекула состоит из глицерина и жирных кислот. Разнообразие последних и обусловливает многообразие липидов. В мембранах клеток широко встречаются
фосфолипиды (содержащие, кроме жирных, остаток фосфорной кислоты) и гликолипиды (соединения липидов и сахаридов).
Полиненасыщенные жирные кислоты и некоторые другие компоненты жиров являются незаменимыми. Полиненасыщенные жирные кислоты участвуют в синтезе
фосфолипидов и липопротеидов, образовании миелиновых оболочек и соединительной ткани. Предельные насыщенные жирные кислоты используются в основном в качестве источника энергии.
От их присутствия в организме зависит эффективность жирового обмена. Липотропные вещества необходимы для обмена триглицеридов,
фосфолипидов и транспортных форм липидов, в процессе которого образуются легкоусвояемые липидные соединения.
Каждый монослой ее образован в основном молекулами
фосфолипидов и, частично, холестерина. При этом в каждой липидной молекуле различают две части: гидрофильную головку и гидрофобные хвосты. Гидрофобные хвосты липидных молекул связываются друг с другом и образуют билипидный слой. Гидрофильные головки билипидного слоя соприкасаются с внешней или внутренней средой. Билипидная мембрана, а точнее ее глубокий гидрофобный слой, выполняет барьерную функцию, препятствуя проникновению воды и растворенных в ней веществ, а также крупных молекул и частиц.
Эссенциальные
фосфолипиды являются прекрасным растворителем для холестерина. Молекула фосфолипида может растворить 3 молекулы холестерина и вывести из организма. Причем фосфолипиды способны извлекать холестерин как из атеросклеротических бляшек, так и из клеточных мембран в случае чрезмерного накопления в них холестерина.
Накопились данные, свидетельствующие о сложных нарушениях не только липидного, но и белкового обмена, причем важнейшая роль отводится эндогенному холестерину. В крови при атеросклерозе нарушается взаимодействие между холестерином и
фосфолипидами , в результате чего коэффициент фосфолипиды/холестерин уменьшается. Увеличивается количество насыщенных жирных кислот, а ненасыщенных – уменьшается. Обнаруживается также ослабление связи холестерина с белковым компонентом беталипопротеинового комплекса. Увеличивается число фракций беталипопротеидов и уменьшается количество альфалипопротеидов, содержащих фосфолипиды.
Метионин способствует усвоению жиров, не позволяя им накапливаться в печени и на стенках артерий, поэтому он очень важен в профилактике атеросклероза. Также он обладает способностью очищать печень от избытков жира, предотвращая ее жировое перерождение. Он участвует в процессах синтеза
фосфолипидов и других веществ, активирует гормоны, витамины и ферменты из тех, что могут нейтрализовать различные токсины. Метионин улучшает пищеварение, укрепляет мышцы, облегчает течение токсикоза во время беременности. Он нужен для синтеза нуклеиновых кислот, коллагена и других белков, участвующих в построении тканей организма.
Эта идея на первый взгляд может показаться очень простой, но давайте попробуем разобраться, что такое «химическая природа» вещества? Нам известно, что эффекты, оказываемые на организм различными химическими веществами, зависят от структуры их молекул. Токсичность по определению проявляется на молекулярном уровне, потому что действие яда определяется тем, как его конкретные молекулы взаимодействуют с конкретными биологическими мишенями в организме. Эти биологические мишени могут быть общими, как, например,
фосфолипиды – тонкий слой жиров, входящих с состав всех клеточных оболочек, или очень узкими – например, рецептор к какому-либо нейротрансмиттеру, который может быть навсегда заблокирован по-особому устроенной молекулой пестицида, подходящей именно к данному рецептору. Таким образом, природа токсичного вещества – это его молекулярная структура, так как именно она определяет его химическую активность.
Жиров в зерне злаков от 2 до 6,2 %. В их состав входят ненасыщенные жирные кислоты, в том числе биологически ценные полиненасыщенные, обладающие антиоксидантными свойствами, а также
фосфолипиды (лецитины, кефалины), необходимые нам для обновления клеток и внутриклеточных структур, т. е. для того, чтобы ткани нашего тела легко и быстро развивались, заменяя погибшие из-за болезни, задерживая старение, активно сопротивлялись инфекции, противостояли канцерогенам и холестерину. В этом заключается лечебный эффект масла из зародышей кукурузы и пшеницы. Однако ненасыщенные жирные кислоты легко прогоркают, вызывая порчу муки и крупы при хранении. Вы уже знаете, что при переработке их удаляют из размалываемого зерна.
За 100–120 дней циркуляции в организме способность эритроцита к деформации снижается. С возрастом снижается стойкость эритроцитов к осмотическому разрушению эритроцитов, к саморазрушению, в меньшей степени – к механической травме. Стареющие сферические эритроциты, как и сфероциты при патологии, имеющие пониженную способность к деформации, не могут проходить через миллипоровые фильтры 3 мкм, задерживаются они и селезенкой. Возможно, снижение деформируемости с возрастом эритроцита и сферуляция клетки связаны с изменением цитоскелета. У старого эритроцита обнаруживается агрегация спектрина и гемоглобина. В деформируемости эритроцита играет роль не только цитоскелет, но и липиды мембраны, в частности соотношение
фосфолипидов и холестерина в мембране, которое определяет текучесть мембраны у всех клеток вообще. Это свойство также может иметь отношение к стойкости мембраны эритроцита. Текучесть клеточных мембран меняется при их отмывании.
В клетках эукариот синтез ДНК происходит, в основном, в специфических плотных структурах ("репликативных фабриках"), присоединенных к диффузному ядерному матриксу. Предполагается, что в молекулярной организации ядерного матрикса играют некоторую роль
фосфолипиды и что ДНК связана с ядерным скелетом гидрофобными взаимодействиями. "Репликативные фабрики" или 21S репликативные комплексы, включают в себя группу ферментов, состоящую не менее чем из 30 белков с молекулярной массой от 15 до 300 кДа, и содержат помимо ДНК-полимеразы α – праймазы еще и 3'-5'-экзонуклеазу, ДНК-лигазу I, РНКазу Н, ДНК-топоизомеразу I, ДНК-геликазу, РСNA и ряд других факторов. Также этот комплекс содержит RРА, специфически взаимодействующий с субъединицей р48 комплекса полимераза-праймаза. Значительный запас ДНК-полимеразы α накапливается в яйцеклетках иглокожих, амфибий, костистых рыб и дрозофилы для обеспечения интенсивной репликации ядерной ДНК в ходе раннего развития.
Холин (витамин В4). Основное физиологическое значение холина липотропное; он предупреждает ожирение печени. Входит в состав
фосфолипидов , имеет значение в жировом составе. Может синтезироваться из метионина, но иногда синтез нарушается. Содержится в продуктах животного и растительного происхождения, в большом количестве в желтках, мозге, печени, зерновых продуктах, семечках, мясе. Суточная потребность – 250–600 мг.
Выделительная функция печени действует за счет секреции желчи. Образование желчи происходит непрерывно и круглосуточно. Ее суточное количество, вырабатываемое клетками печени, у взрослого человека в среднем составляет от 0,5 до 1 л. Желчь на 82 % состоит из воды, на 12 % из желчных кислот, на 4 % из лецитина и других
фосфолипидов , 0,7 % составляет холестерин, остальная часть содержит билирубин и другие вещества. После еды выделение желчи рефлекторно усиливается уже через 3-12 минут, причем одним из раздражителей, влияющих на ускорение этого процесса, является сама желчь.
То есть жир – весьма хитрая вещь, и чужое сало еще заставит попотеть ученых. А пока вернемся к приготовлению сала из жировой ткани. Извлеченная из туши животного жировая ткань (сало-сырец) выглядит прогорклой бесформенной массой, мылкой на ощупь. Чтобы разрушить клеточные стенки и получить чистый жир, жировое вещество вытапливают. При этом образуется топленое сало и шквара, представляющая собой остатки клеточных стенок. Определение «чистый жир» не совсем соответствует действительности, потому что жировые продукты, потребляемые людьми, состоят не из одних жиров, но и
фосфолипидов и прочих липоидов – жироподобных веществ.
Инулин улучшает обмен липидов – холестерина, триглицеридов и
фосфолипидов в крови. Поэтому снижает риск возникновения сердечнососудистых заболеваний, смягчает их последствия, укрепляет иммунную систему организма.