Связанные понятия
Картографи́ческая прое́кция — математически определенный способ отображения поверхности Земли (либо другого небесного тела, или в общем смысле, любой искривлённой поверхности) на плоскость.
Фокус — в геометрии точка, относительно которой (которых) проводится построение некоторых кривых. Например, один или два фокуса могут использоваться при построении конических сечений, в число которых входит окружность, эллипс, парабола и гипербола. Также два фокуса используются при построении овала Кассини и овала Декарта. Большее число фокусов рассматривается при определении n-эллипса.
В этом списке картографические проекции рассортированы по виду поверхности проектирования. Традиционно выделяют три категории проекций: цилиндрические, конические и азимутальные. Некоторые проекции трудно отнести к какой-либо из этих трёх категорий. С другой стороны, проекции можно классифицировать по характеристикам поверхности, которые они оставляют неизменными: направления, локальную форму, площадь и расстояние.
Подробнее: Список картографических проекций
Э́ллипс (др.-греч. ἔλλειψις «опущение; нехватка, недостаток (эксцентриситета до 1)») — замкнутая кривая на плоскости, которая может быть получена как пересечение плоскости и кругового цилиндра или как ортогональная проекция окружности на плоскость.
Гномоническая проекция — один из видов картографических проекций. Получается проектированием точек сферы из центра сферы на плоскость. Название этой проекции связано с гномоном — вертикальным столбиком простейших солнечных часов.
Равноугольная (конформная) проекция — картографическая проекция, обладающая свойством конформного отображения, то есть позволяющая передавать на картах углы без искажений и сохранять в каждой точке постоянный масштаб по всем направлениям, хотя в разных местах карты масштаб различен.
Аксонометри́ческая прое́кция (от др.-греч. ἄξων «ось» + μετρέω «измеряю») — способ изображения геометрических предметов на чертеже при помощи параллельных проекций.
Инве́рсия (от лат. inversio «обращение») относительно окружности — преобразование евклидовой плоскости, переводящее обобщённые окружности (окружности либо прямые) в обобщённые окружности, при котором одна из окружностей поточечно переводится в себя.
В математике и физике барице́нтр, или геометри́ческий центр, двумерной области — это среднее арифметическое положений всех точек фигуры. Определение распространяется на любой объект в n-мерном пространстве — барицентр является средним положением всех точек фигуры по всем координатным направлениям. Неформально — это точка равновесия фигуры, вырезанной из картона в предположении, что картон имеет постоянную плотность и гравитационное поле постоянно по величине и направлению.
Подробнее: Барицентр
Окружность Аполло́ния — геометрическое место точек плоскости, отношение расстояний от которых до двух заданных точек — величина постоянная, не равная единице.
Параболические координаты — ортогональная
система координат на плоскости, в которой координатные линии являются конфокальными параболами. Трёхмерный вариант этой системы координат получается при вращении парабол вокруг их оси симметрии.
Систе́ма координа́т — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.
В геометрии трисектриса Маклорена — это кубика, примечательная своим свойством трисекции, поскольку она может быть использована для трисекции угла. Её можно определить как геометрическое место точек пересечения двух прямых, каждая из которых вращаются равномерно вокруг двух различных точек (полюсов) с отношением угловых скоростей 1:3, при этом первоначально прямые совпадают с прямой, проходящей через эти полюса. Обобщение этого построения называется Секущая Маклорена. Секущая названа в честь Колина...
Пара́бола (греч. παραβολή — приложение) — геометрическое место точек, равноудалённых от данной прямой (называемой директрисой параболы) и данной точки (называемой фокусом параболы).
Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат. Очень легко и прямо обобщается для пространств любой размерности, что также способствует её широкому применению.
Окружность на сфере получается при пересечении сферы с плоскостью. Если плоскость проходит через центр сферы (то есть является диаметральной плоскостью), то получившаяся окружность будет иметь максимальный возможный радиус. Такая окружность называется большой окружностью (иногда большим кругом). Если пересекающая плоскость не проходит через центр, то получившаяся окружность называется малой окружностью. В сферической геометрии окружности на сфере являются аналогом окружностей в плоской геометрии...
Кардио́ида (греч. καρδία — сердце, греч. εἶδος — вид) — плоская линия, которая описывается фиксированной точкой окружности, катящейся по неподвижной окружности с таким же радиусом. Получила своё название из-за схожести своих очертаний со стилизованным изображением сердца.
Кривизна ́ — собирательное название ряда характеристик (скалярных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т. д.) от соответствующих «плоских» объектов (прямая, плоскость, евклидово пространство и т. д.).
Кватернионы предоставляют удобное математическое обозначение положения и вращения объектов в пространстве. В сравнении с углами Эйлера, кватернионы позволяют проще комбинировать вращения, а также избежать проблемы, связанной с невозможностью поворота вокруг оси, независимо от совершённого вращения по другим осям (на иллюстрации). В сравнении с матрицами они обладают большей вычислительной устойчивостью и могут быть более эффективными. Кватернионы нашли своё применение в компьютерной графике, робототехнике...
Эпицикло́ида (от др.-греч. ὲπί — на, над, при и κύκλος — круг, окружность) — плоская кривая, образуемая фиксированной точкой окружности, катящейся по внешней стороне другой окружности без скольжения.
Координаты Борна в специальной теории относительности — система координат, применяемая для описания вращающейся окружности или (в более общем смысле) диска.
Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности (например, бутылка Клейна), которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.
Инверсия кривой — результат применения операции инверсии к заданной кривой C. По отношению к фиксированной окружности с центром O и радиусом k инверсия точки Q — это точка P, лежащая на луче OQ, и OP•OQ = k2. Инверсия кривой C — это множество всех точек P, являющихся инверсиями точек Q, принадлежащих кривой C. Точка O в этом построении называется центром инверсии, окружность называется окружностью инверсии, а k — радиусом инверсии.
Говорят, что два и более объектов концентричны или коаксиальны, если они имеют один и тот же центр или ось. Окружности, правильные многоугольники, правильные многогранники и сферы могут быть концентричны друг другу (имея одну и ту же центральную точку), как могут быть концентричными и цилиндры (имея общую коаксиальную ось).
Подробнее: Концентричные объекты
У́гол — геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки (которая называется вершиной угла).
В релятивистской физике координатами Риндлера называется важная и полезная координатная система, представляющая часть плоского пространства-времени, также называемого пространством Минковского. Координаты Риндлера были введены Вольфгангом Риндлером для описания пространства-времени равномерно ускоренного наблюдателя.
Подробнее: Координаты Риндлера
Тор (тороид) — поверхность вращения, получаемая вращением образующей окружности вокруг оси, лежащей в плоскости этой окружности и не пересекающей её.
Архимедова спираль — спираль, плоская кривая, траектория точки M (см Рис. 1), которая равномерно движется вдоль луча OV с началом в O, в то время как сам луч OV равномерно вращается вокруг O. Другими словами, расстояние ρ = OM пропорционально углу поворота φ луча OV.
Географическая карта — изображение модели земной поверхности в уменьшенном виде, содержащее координатную сетку с условными знаками на плоскости.
Срединная ось фигуры является геометрическим объектом, представляющим собой геометрическое место точек плоскости, равноудаленных от границы фигуры (то есть имеющих, по крайней мере, две ближайшие точки на границе фигуры).
Криволине́йная систе́ма координа́т , или криволине́йные координа́ты, — система координат в евклидовом (аффинном) пространстве, или в области, содержащейся в нём. Криволинейные координаты не противопоставляются прямолинейным, последние являются частным случаем первых. Применяются обычно на плоскости (n=2) и в пространстве (n=3); число координат равно размерности пространства n.
Суперэллипсоид — геометрическое тело, поперечными сечениями которого являются суперэллипсы (кривые Ламе) с одним и тем же показателем степени r, а вертикальные сечения — суперэллипсы с одним и тем же показателем степени t. Некоторые суперэллипсоиды являются суперквадриками, однако ни одно из этих семейств не является подмножеством другого.
Несобственная
точка, идеальная точка , омега-точка или бесконечно удалённая точка — это вполне определенная точка вне гиперболической плоскости или пространства.
Астигмати́зм — аберрация, при которой изображение точки, находящейся вне оси, и образуемое узким пучком лучей, представляет собой два отрезка прямой, расположенных перпендикулярно друг другу на разных расстояниях от плоскости безаберрационного фокуса (плоскости Гаусса). Астигматизм возникает вследствие того, что лучи наклонного пучка имеют различные точки сходимости — точки меридионального или сагиттального фокусов бесконечно тонкого наклонного пучка.
Начало координат (начало отсчёта) в евклидовом пространстве — особая точка, обычно обозначаемая буквой О, которая используется как точка отсчёта для всех остальных точек. В евклидовой геометрии начало координат может быть выбрано произвольно в любой удобной точке.
Конические координаты — трёхмерная ортогональная система координат, состоящая из концентрических сфер (радиус r) и двумя семействами перпендикулярных конусов, направленных вдоль осей z и x.
В планиметрии изотоми́ческим сопряже́нием называется одно из преобразований плоскости, порождаемое заданным на плоскости треугольником ABC.
Подробнее: Изотомическое сопряжение
Начерта́тельная геоме́трия — инженерная дисциплина, представляющая двумерный геометрический аппарат и набор алгоритмов для исследования свойств геометрических объектов.
Касательная прямая к окружности в евклидовой геометрии на плоскости — прямая, которая имеет с окружностью ровно одну общую точку. Также можно определить касательную как предельное положение секущей, когда точки пересечения её с окружностью бесконечно сближаются. Касательные прямые к окружностям служат предметом рассмотрения ряда теорем и играют важную роль во многих геометрических построениях и доказательствах.
Орби́та (от лат. orbita «колея, дорога, путь») — траектория движения материальной точки в наперёд заданной системе пространственных координат для заданной в этих координатах конфигурации поля сил, которые на неё действуют. Термин был введён Иоганном Кеплером в книге «Новая астрономия» (1609).
В геометрии циссоида — это кривая, созданная из двух заданных кривых C1, C2 относительно точки O (полюса). Пусть L — прямая, проходящая через O и пересекающая C1 в точке P1, а C2 — в точке P2. Пусть P — точка на L такая, что OP = P1P2 (на самом деле имеются две таких точки, но P выбирается так, что P находится в том же направлении от O, что и P2 от P1). Множество таких точек P называется циссоидой кривых C1, C2 относительно O.
Центр подобия (или центр гомотетии) — это точка, из которой по меньшей мере две геометрически подобные фигуры можно видеть как масштабирование (растяжение/сжатие) друг друга. Если центр внешний, две фигуры похожи друг на друга прямо — их углы одни и те же в смысле вращения. Если центр внутренний, две фигуры являются изменёнными в размерах отражениями друг друга — их углы противоположны.
Орицикл (греч. ὅρος + κύκλος — «граница + круг»), предельная линия ― линия на плоскости Лобачевского, ортогональная к некоторому семейству параллельных прямых.
Параксиа́льное приближе́ние в геометрической оптике — рассмотрение только лучей, идущих под малыми углами к главной оптической оси. Параксиальное приближение применимо во многих оптических приборах и существенно упрощает теоретические расчеты.
Фундамента́льная пло́скость — плоскость, выбором которой (как, впрочем, и началом координат в заданной точке этой плоскости) определяются различные системы сферических, географических, геодезических и астрономических координат (включая небесные координаты).
Проективная пло́скость — двумерное проективное пространство. Важным частным случаем является вещественная проективная плоскость.