Связанные понятия
Каса́тельная пряма́я — прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.
Геодези́ческая (геодезическая линия) — кривая определённого типа, обобщение понятия «прямая» для искривлённых пространств.
Длина кривой (или, что то же, длина дуги кривой) — числовая характеристика протяжённости этой кривой. Исторически вычисление длины кривой называлось спрямлением кривой (от лат. rectificatio, спрямление).
Поверхность вращения — поверхность, образуемая при вращении вокруг прямой (оси поверхности) произвольной линии (прямой, плоской или пространственной кривой). Например, если прямая пересекает ось вращения, то при её вращении получится коническая поверхность, если параллельна оси — цилиндрическая, если скрещивается с осью — гиперболоид. Одна и та же поверхность может быть получена вращением самых разнообразных кривых.
Крива́я или ли́ния — геометрическое понятие, определяемое в разных разделах математики различно.
Упоминания в литературе
Расчет радиуса
кривизны внутренней поверхности основания пирамиды R3, производится по методике, изложенной применительно к граням. В качестве исходных данных при определении дуги окружности радиуса R3, выступают хорда, равная стороне основания ас = L = 2 ? К ? ?0,5, и касательные к выпуклой внутренней поверхности граней, проходящие под углом 51,8272923° – 45°= = 6,8272923° к горизонтали ас (рис. 5).
Прежде всего, в зрительной памяти это уравнение хранится как символический образ. Кроме того, его можно задать словесным описанием: в каждой точке графика функции игрек от икса сумма ординаты точки, тангенса угла наклона касательной, деленного на абсциссу точки, и
кривизны графика в этой точке равна нулю. Думается, что этих примеров достаточно для иллюстрации роли образного мышления в человеческом сознании. Пренебрегать образным мышлением и преувеличивать роль логического мышления недопустимо.
Возвращаясь к нашей ситуации, подчеркнем, что разные координатные сетки отвечают разному выбору того, что мы называем r и ct. Оказывается, переходы от некоторых r и ct к другим имеют физический смысл замен систем отсчета. И эти системы отсчета не обязаны быть инерциальными. Обратим теперь внимание на то, что при замене координатных сеток не меняются никакие физически осмысленные величины. Например, не меняются расстояния между любыми двумя точками в пустыне. Также неизменны сетки из мировых линий свободных частиц. Инвариантна и
кривизна нашего пространства-времени – положения, высоты и округлости барханов.
Особенно интересен с точки зрении геометрии момент ощупывания сложного элемента контура (рисунок 1.53 г). В то время как четыре пальца относительно синхронно передвигаются по кривой авс, большой палец фиксирует точку d. Различение изменяющихся во время движения расстояний между точками контакта пальцев с контуром позволяет с наибольшей степенью точности оценить
кривизну линии авс. Рука в данном случае действует подобно циркулю-измерителю.
Вместо гипотетической силы, которая заставляет траекторию частицы отклоняться от прямой линии, Эйнштейн ввел пространство-время, которое уже искривлено и
кривизна которого влияет на траекторию движущейся частицы. И не надо никакого дальнодействия: пространство-время искривлено потому, что именно так влияют на него звезды, а все тела, движущиеся по орбитам, реагируют на кривизну поблизости. То, что мы и Ньютон называем тяготением и представляем себе в виде силы, на самом деле является кривизной пространства-времени.
Связанные понятия (продолжение)
Геометри́ческое ме́сто то́чек (ГМТ) — фигура речи в математике, употребляемая для определения геометрической фигуры как множества точек, обладающих некоторым свойством.
Начало координат (начало отсчёта) в евклидовом пространстве — особая точка, обычно обозначаемая буквой О, которая используется как точка отсчёта для всех остальных точек. В евклидовой геометрии начало координат может быть выбрано произвольно в любой удобной точке.
Метри́ческий те́нзор , или ме́трика, — это симметричное тензорное поле ранга (0,2) на гладком многообразии, посредством которого задаются скалярное произведение векторов в касательном пространстве, длины кривых, углы между кривыми и т. д.
Касательный вектор — элемент касательного пространства, например элемент касательной прямой к кривой, касательной плоскости к поверхности так далее.
Асимпто́та или аси́мптота (от др.-греч. ἀσύμπτωτος — несовпадающий, не касающийся кривой с бесконечной ветвью) — прямая, обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Термин впервые появился у Аполлония Пергского, хотя асимптоты гиперболы исследовал ещё Архимед.
Паралле́льный перено́с (иногда трансляция) ― частный случай движения, при котором все точки пространства перемещаются в одном и том же направлении на одно и то же расстояние.
Инве́рсия (от лат. inversio «обращение») относительно окружности — преобразование евклидовой плоскости, переводящее обобщённые окружности (окружности либо прямые) в обобщённые окружности, при котором одна из окружностей поточечно переводится в себя.
Векторное произведение двух векторов в трёхмерном евклидовом пространстве — вектор, перпендикулярный обоим исходным векторам, длина которого равна площади параллелограмма, образованного исходными векторами, а выбор из двух направлений определяется так, чтобы тройка из по порядку стоящих в произведении векторов и получившегося вектора была правой. Векторное произведение коллинеарных векторов (в частности, если хотя бы один из множителей — нулевой вектор) считается равным нулевому вектору.
Коллинеа́рность — отношение параллельности векторов: два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой. Допусти́м синоним — «параллельные» векторы.
Грани́ца мно́жества A — множество всех точек, расположенных сколь угодно близко как к точкам во множестве A, так и к точкам вне множества A.
Пло́скость — одно из основных понятий геометрии. При систематическом изложении геометрии понятие плоскости обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии.
Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр.
Аффи́нная свя́зность — линейная связность на касательном расслоении многообразия. Координатными выражениями аффинной связности являются символы Кристоффеля.
Риманов
тензор кривизны представляет собой стандартный способ выражения кривизны римановых многообразий, а в общем случае — произвольных многообразий аффинной связности, без кручения или с кручением.
Норма́ль — прямая, ортогональная (перпендикулярная) касательному пространству (касательной прямой к кривой, касательной плоскости к поверхности и так далее).
Изометрия — биекция между метрическими пространствами, сохраняющая расстояния между точками.
Особая точка кривой — точка, в окрестности которой не существует гладкой параметризации. Точное определение зависит от типа изучаемой кривой.
Свя́зность Ле́ви-Чиви́ты или связность, ассоциированная с метрикой — одна из основных структур на римановом многообразии.
Дифференциальная геометрия поверхностей — раздел математики, изучающий поверхности методами дифференциальной геометрии. При этом исследуемые поверхности обычно подчинены условиям, связанным с возможностью применения методов дифференциального исчисления. Как правило, это — условия гладкости поверхности, то есть существования в каждой точке поверхности определённой касательной плоскости, кривизны и т. д. Эти требования сводятся к тому, что функции, задающие поверхность, предполагаются однократно, дважды...
Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности (например, бутылка Клейна), которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.
Точка перегиба — точка плоской кривой, в которой её ориентированная кривизна меняет знак. Если кривая является графиком функции, то в этой точке выпуклая часть функции отделяется от вогнутой (то есть вторая производная функции меняет знак).
Векторное поле — это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие вектор с началом в этой точке.
Подмногообразие ― термин, используемый для нескольких схожих понятий в общей топологии, дифференциальной геометрии и алгебраической геометрии.
В математике особой точкой векторного поля называется точка, в которой векторное поле равно нулю. Особая точка векторного поля является положением равновесия или точкой покоя динамической системы, определяемой данным векторным полем: фазовая траектория с началом в особой точке состоит в точности из этой особой точки, а соответствующая ей интегральная кривая представляет собой прямую, параллельную оси времени.
Подробнее: Особая точка (дифференциальные уравнения)
То́чка — абстрактный объект в пространстве, не имеющий никаких измеримых характеристик (нульмерный объект). Точка является одним из фундаментальных понятий в математике.
Дифференциа́л (от лат. differentia «разность, различие») — линейная часть приращения функции.
Ве́ктор (от лат. vector, «несущий») — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве (или на плоскости).
Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических...
Симплектическое многообразие — это многообразие с заданной на нём симплектической формой, то есть замкнутой невырожденной дифференциальной 2-формой.
Особенность , или сингулярность в математике — это точка, в которой математический объект (обычно функция) не определён или имеет нерегулярное поведение (например, точка, в которой функция имеет разрыв или недифференцируема).
Гладкая функция , или непрерывно дифференцируемая функция, — функция, имеющая непрерывную производную на всём множестве определения. Очень часто под гладкими функциями подразумевают функции, имеющие непрерывные производные всех порядков.
Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
Поворо́т (враще́ние) — движение, при котором по крайней мере одна точка плоскости (пространства) остаётся неподвижной.
Гауссова кривизна — мера искривления поверхности в окрестности какой-либо её точки. Гауссова кривизна является объектом внутренней геометрии поверхностей, в частности, не изменяется при изометрических изгибаниях.
Абсолю́тно твёрдое те́ло — второй опорный объект механики наряду с материальной точкой. Механика абсолютно твёрдого тела полностью сводима к механике материальных точек (с наложенными связями), но имеет собственное содержание (полезные понятия и соотношения, которые могут быть сформулированы в рамках модели абсолютно твёрдого тела), представляющее большой теоретический и практический интерес.
Площадь плоской фигуры — аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное множество единичных квадратов, площадь равна числу квадратов.
Обобщённые координаты — параметры, описывающие конфигурацию динамической системы относительно некоторой эталонной конфигурации в аналитической механике, а конкретно исследовании динамики твёрдых тел в системе многих тел. Эти параметры должны однозначно определять конфигурацию системы относительно эталонной конфигурации. Обобщённые скорости — производные по времени обобщённых координат системы.
Конформное отображение — непрерывное отображение, сохраняющее углы между кривыми, а значит и форму бесконечно малых фигур.
Теорема Жордана — классическая теорема геометрии известная благодаря простоте формулировки и чрезвычайной сложности доказательства.
Систе́ма координа́т — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.
Аффи́нное простра́нство — математический объект (пространство), обобщающий некоторые свойства евклидовой геометрии. В отличие от векторного пространства, аффинное пространство оперирует с объектами не одного, а двух типов: «векторами» и «точками».
Двойственная кривая (или дуальная кривая) к заданной кривой на проективной плоскости — это кривая на двойственной проективной плоскости, состоящая из касательных к заданной гладкой кривой. В этом случае кривые называются взаимно двойственными (дуальными). Понятие может быть обобщено для негладких кривых и на многомерное пространство.
Касательное пространство Зарисского — конструкция в алгебраической геометрии, позволяющая построить касательное пространство в точке алгебраического многообразия. Эта конструкция использует не методы дифференциальной геометрии, а только методы общей, и, в более конкретных ситуациях, линейной алгебры.
Упоминания в литературе (продолжение)
Величина капиллярного давления зависит от
кривизны поверхности и поверхностного натяжения и выражается уравнением Лапласа. Рассмотрим вывод данного уравнения. Пусть нам дан элементарный участок искривленной поверхности площадью
3. Кривые линии с переменным радиусом
кривизны (параболы и спирали). Для вечернего туалета чаще используют криволинейность, сложные драпировки, косой крой.
Картой называется уменьшенное изображение на плоскости всей земной поверхности или значительных участков местности, размеры которых не позволяют пренебречь
кривизной Земли.
Потеряв в специальной теории относительности свою «независимость» от движущихся тел и друг от друга, пространство и время как бы «нашли» друг друга в едином пространственно-временном четырехмерном континууме. Автор континуума математик Герман Минковский опубликовал в 1908 г. работу «Основания теории электромагнитных процессов», в которой утверждал, что отныне пространство само по себе и время само по себе должны быть низведены до роли теней и только некоторый вид соединения обоих должен по-прежнему сохранять самостоятельность. Идея А. Эйнштейна и состояла в том, чтобы представить все физические законы как свойства этого континуума, как его метрику. С этой новой позиции А. Эйнштейн рассмотрел закон тяготения И. Ньютона. Вместо силы тяготения он стал оперировать полем тяготения. Поля тяготения были включены в пространственно-временной континуум как его «искривление». Метрика континуума стала неевклидовой, «римановской» метрикой. «
Кривизна » континуума стала рассматриваться как результат распределения движущихся в нем масс. Новая теория объяснила не согласующуюся с ньютоновским законом тяготения траекторию вращения Меркурия вокруг Солнца, а также отклонения луча звездного света, проходящего вблизи Солнца.
Гониоскоп – это четырехгранная стеклянная призма или пирамида с зеркальными внутренними поверхностями. Передняя часть прибора предназначена для контакта с роговицей и имеет соответствующую ей
кривизну . На пути лучей, выходящих из камерного угла, стоит отражающее зеркало – таким образом, что в нем виден противолежащий угол.
Расчет показателей глазодвигательной активности. В качестве базовых показателей глазодвигательной активности могут выступать как традиционные универсальные показатели (число и средняя продолжительность фиксаций, число саккад в различных направлениях, амплитуда и
кривизна саккад, общая длительность испытания и т. п.), рассчитываемые, как правило, по выявленным окуломоторным событиям с помощью средств проприетарного программного обеспечения, поставляемого вместе с оборудованием (Барабанщиков, Жегалло, 2013). Такие показатели удобны тем, что они не привязаны к контексту задачи или стимульному материалу и могут вычисляться для любого набора выявленных окуломоторных событий. Однако универсальность подобных показателей может рассматриваться и как недостаток в силу невозможности учесть при их расчете специфику стимульного материала и невозможности отразить с их помощью динамические свойства изучаемого процесса зрительного поиска.
Оригинальный математический аппарат неевклидовой геометрии позволил Эйнштейну далеко продвинуться в понимании сущности всемирного тяготения. Именно таким образом великий теоретик пришел к парадоксальной идее, составившей основу второй части релятивистской концепции: связать силу тяготения с
кривизной нашего пространства. Надо заметить, что основные уравнения общей теории относительности впервые вывел Давид Гильберт. Правда, он пришел к сущности своих знаменитых уравнений, составивших «пространство Гильберта» своим собственным путем в результате исследований, которые повлияли на современную математику не меньше, чем идеи теории относительности на физику. Любопытно и другое: Гильберт и Эйнштейн посвятили свою жизнь поискам наиболее общих принципов организации мироздания. Причем, если Гильберт искал единые основы мира математических идей, то жизненным идеалом Эйнштейна было создание теории некоего единого поля. Из этой «теории всего» можно было бы как частный случай вывести существование всех известных частиц и сил. Эта «чаша Грааля» современной физики до сих пор остается недостижимой, но ее поиски ведутся весьма интенсивно, причем как физиками-теоретиками, так и экспериментаторами.
В бондарном деле для измерения
кривизны выпуклой поверхности клепки, а также для определения скосов боковых кромок и ширины клепок у торцов и в середине применяют бондарную скобу. Бондарная скоба является самым распространенным шаблоном в течение сотен лет. Для каждого вида бондарной посуды изготовляют свою скобу. Чем посуда разнообразнее, тем больший набор скоб у бондаря. Размеры скоб зависят от величины обручной посуды, а деления на них зависят от разницы отношений окружностей в самой узкой и самой широкой части. Форма бочки условно делится на два усеченных конуса, имеющих общее основание в ее середине. Эту же геометрическую форму имеют кадка, ушаты, ведра и другие бондарные изделия с прямыми ладами.