Связанные понятия
Формальный язык в математической логике и информатике — множество конечных слов (строк, цепочек) над конечным алфавитом. Понятие языка чаще всего используется в теории автоматов, теории вычислимости и теории алгоритмов. Научная теория, которая имеет дело с этим объектом, называется теорией формальных языков.
Тео́рия алгори́тмов — наука, находящаяся на стыке математики и информатики, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач, асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п. Вместе с математической логикой теория алгоритмов...
Теория вычислимости , также известная как теория рекурсивных функций, — это раздел современной математики, лежащий на стыке математической логики, теории алгоритмов и информатики, возникшей в результате изучения понятий вычислимости и невычислимости. Изначально теория была посвящена вычислимым и невычислимым функциям и сравнению различных моделей вычислений. Сейчас поле исследования теории вычислимости расширилось — появляются новые определения понятия вычислимости и идёт слияние с математической...
Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
Автоматическое доказательство (англ. Automated Theorem Proving, ATP, а также Automated deduction) — доказательство, реализованное программно. В основе лежит аппарат математической логики. Используются идеи теории искусственного интеллекта. Процесс доказательства основывается на логике высказываний и логике предикатов.
Теоретическая информатика — это научная область, предметом изучения которой являются информация и информационные процессы, в которой осуществляется изобретение и создание новых средств работы с информацией. Это подразделение общей информатики и математики, которое сосредотачивается на более абстрактных или математических аспектах вычислительной техники и включает в себя теорию алгоритмов.
Символьные вычисления — это преобразования и работа с математическими равенствами и формулами как с последовательностью символов. Они отличаются от численных расчётов, которые оперируют приближёнными численными значениями, стоящими за математическими выражениями. Системы символьных вычислений (их так же называют системами компьютерной алгебры) могут быть использованы для символьного интегрирования и дифференцирования, подстановки одних выражений в другие, упрощения формул и т. д.
Теория типов — математически формализованная база для проектирования, анализа и изучения систем типов данных в теории языков программирования (раздел информатики). Многие программисты используют это понятие для обозначения любого аналитического труда, изучающего системы типов в языках программирования. В научных кругах под теорией типов чаще всего понимают более узкий раздел дискретной математики, в частности λ-исчисление с типами.
Дискре́тная матема́тика — часть математики, изучающая дискретные математические структуры, такие, как графы и утверждения в логике.
В логике логи́ческими опера́циями называют действия, вследствие которых порождаются новые понятия, с использованием уже существующих. В более узком смысле, понятие логической операции используется в математической логике и программировании.
Подробнее: Логическая операция
Исчисление процессов или алгебра процессов — семейство связанных подходов к формальному моделированию параллельных систем.
Каррирование (от англ. currying, иногда — карринг) — преобразование функции от многих аргументов в набор функций, каждая из которых является функцией от одного аргумента. Возможность такого преобразования впервые отмечена в трудах Готтлоба Фреге, систематически изучена Моисеем Шейнфинкелем в 1920-е годы, а наименование получило по имени Хаскелла Карри — разработчика комбинаторной логики, в которой сведение к функциям одного аргумента носит основополагающий характер.
Опера́ция — отображение, ставящее в соответствие одному или нескольким элементам множества (аргументам) другой элемент (значение). Термин «операция» как правило применяется к арифметическим или логическим действиям, в отличие от термина «оператор», который чаще применяется к некоторым отображениям множества на себя, имеющим замечательные свойства.
Маши́на Тью́ринга (МТ) — абстрактный исполнитель (абстрактная вычислительная машина). Была предложена Аланом Тьюрингом в 1936 году для формализации понятия алгоритма.
Формальная верификация или формальное доказательство — формальное доказательство соответствия или несоответствия формального предмета верификации его формальному описанию. Предметом выступают алгоритмы, программы и другие доказательства.
Регуля́рный язык (регуля́рное мно́жество) в теории формальных языков — множество слов, которое распознает некоторый конечный автомат. Класс регулярных множеств удобно изучать в целом, а полученные результаты оказываются применимы для достаточно широкого спектра формальных языков.
Многозна́чная ло́гика — тип формальной логики, в которой допускается более двух истинностных значений для высказываний. Первую систему многозначной логики предложил польский философ Ян Лукасевич в 1920 году. В настоящее время существует очень много других систем многозначной логики, которые в свою очередь могут быть сгруппированы по классам. Важнейшими из таких классов являются частичные логики и нечёткие логики.
Ля́мбда-исчисле́ние (λ-исчисление) — формальная система, разработанная американским математиком Алонзо Чёрчем, для формализации и анализа понятия вычислимости.
Теория информации — раздел прикладной математики, радиотехники (теория обработки сигналов) и информатики, относящийся к измерению количества информации, её свойств и устанавливающий предельные соотношения для систем передачи данных. Как и любая математическая теория, теория оперирует математическими моделями, а не реальными физическими объектами (источниками и каналами связи). Использует, главным образом, математический аппарат теории вероятностей и математической статистики.
Реку́рсия — определение, описание, изображение какого-либо объекта или процесса внутри самого этого объекта или процесса, то есть ситуация, когда объект является частью самого себя. Термин «рекурсия» используется в различных специальных областях знаний — от лингвистики до логики, но наиболее широкое применение находит в математике и информатике.
Ра́венство (отношение равенства) в математике — бинарное отношение, наиболее логически сильная разновидность отношений эквивалентности.
Теория языков программирования (англ. programming language theory, PLT) — раздел информатики, посвящённый вопросам проектирования, анализа, определения характеристик и классификации языков программирования и изучением их индивидуальных особенностей. Тесно связана с другими ветвями информатики, результаты теории используются в математике, в программной инженерии и лингвистике.
Теория моделей — раздел математической логики, который занимается изучением связи между формальными языками и их интерпретациями, или моделями. Название теория моделей было впервые предложено Тарским в 1954 году. Основное развитие теория моделей получила в работах Тарского, Мальцева и Робинсона.
Теория комбинаторных схем — это часть комбинаторики (раздела математики), рассматривающая существование, построение и свойства семейств конечных множеств, структура которых удовлетворяет обобщённым концепциям равновесия и/или симметрии. Эти концепции не определены точно, так что объекты широкого диапазона могут пониматься как комбинаторные схемы. Так, в одном случае комбинаторные схемы могут представлять собой пересечения множеств чисел, как в блок-схемах, а в другом случае могут отражать расположение...
Подробнее: Комбинаторная схема
Логика первого порядка , называемая иногда логикой или исчислением предикатов — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высших порядков.
Теория колец — раздел общей алгебры, изучающий свойства колец — алгебраических структур со сложением и умножением, схожими по поведению со сложением и умножением чисел. Выделяются два раздела теории колец: изучение коммутативных и некоммутативных колец.
Форма́льная систе́ма (форма́льная тео́рия, аксиоматическая теория, аксиоматика, дедуктивная система) — результат строгой формализации теории, предполагающей полную абстракцию от смысла слов используемого языка, причем все условия, регулирующие употребление этих слов в теории, явно высказаны посредством аксиом и правил, позволяющих вывести одну фразу из других.
Комбина́торная ло́гика — направление математической логики, занимающееся фундаментальными (то есть не нуждающимися в объяснении и не анализируемыми) понятиями и методами формальных логических систем или исчислений. В дискретной математике комбинаторная логика тесно связана с лямбда-исчислением, так как описывает вычислительные процессы.
Структурная индукция — конструктивный метод математического доказательства, обобщающий математическую индукцию (применяемую над натуральным рядом) на произвольные рекурсивно определённые частично упорядоченные совокупности. Структурная рекурсия — реализация структурной индукции в форме определения, процедуры доказательства или программы, обеспечивающая индукционный переход над частично упорядоченной совокупностью.
Алгебраическая комбинаторика — это область математики, использующая методы общей алгебры, в особенности теории групп и теории представлений, в различных комбинаторных контекстах и, наоборот, применяющая комбинаторные техники к задачам в алгебре.
В теории алгоритмов классами сложности называются множества вычислительных задач, примерно одинаковых по сложности вычисления. Говоря более узко, классы сложности — это множества предикатов (функций, получающих на вход слово и возвращающих ответ 0 или 1), использующих для вычисления примерно одинаковые количества ресурсов.
Подробнее: Класс сложности
Вычислительные (численные) методы — методы решения математических задач в численном видеПредставление как исходных данных в задаче, так и её решения — в виде числа или набора чисел.
Норма́льный алгори́тм (алгори́фм) Ма́ркова (НАМ, также марковский алгоритм) — один из стандартных способов формального определения понятия алгоритма (другой известный способ — машина Тьюринга). Понятие нормального алгоритма введено А. А. Марковым (младшим) в конце 1940-х годов в работах по неразрешимости некоторых проблем теории ассоциативных вычислений. Традиционное написание и произношение слова «алгорифм» в этом термине также восходит к его автору, многие годы читавшему курс математической логики...
Логика второго порядка в математической логике — формальная система, расширяющая логику первого порядка возможностью квантификации общности и существования не только над переменными, но и над предикатами. Логика второго порядка несводима к логике первого порядка. В свою очередь, она расширяется логикой высших порядков и теорией типов.
Система компьютерной алгебры (СКА, англ. computer algebra system, CAS) — это прикладная программа для символьных вычислений, то есть выполнения преобразований и работы с математическими выражениями в аналитической (символьной) форме.
Двоичный (бинарный) поиск (также известен как метод деления пополам и дихотомия) — классический алгоритм поиска элемента в отсортированном массиве (векторе), использующий дробление массива на половины. Используется в информатике, вычислительной математике и математическом программировании.
Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения, системы линейных уравнений, среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают...
Сема́нтика в программировании — дисциплина, изучающая формализации значений конструкций языков программирования посредством построения их формальных математических моделей. В качестве инструментов построения таких моделей могут использоваться различные средства, например, математическая логика, λ-исчисление, теория множеств, теория категорий, теория моделей, универсальная алгебра. Формализация семантики языка программирования может использоваться как для описания языка, определения свойств языка...
Алгори́тм (лат. algorithmi — от арабского имени математика Аль-Хорезми) — конечная совокупность точно заданных правил решения произвольного класса задач или набор инструкций, описывающих порядок действий исполнителя для решения некоторой задачи. В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок». Независимые инструкции могут выполняться...
Проблема остановки (или проблема останова) — это одна из центральных проблем в теории алгоритмов, которая может неформально быть поставлена в виде...
Отноше́ние — математическая структура, которая формально определяет свойства различных объектов и их взаимосвязи. Распространёнными примерами отношений в математике являются равенство (=), делимость, подобие, параллельность и многие другие.
Конструктивная математика — абстрактная наука о конструктивных процессах, человеческой способности осуществлять их, и об их результатах — конструктивных объектах.
Гомологическая алгебра — ветвь алгебры, изучающая алгебраические объекты, заимствованные из алгебраической топологии. Первыми гомологические методы в алгебре применили в 40-х годах XX века Фаддеев, Дмитрий Константинович, С. Эйленберг и С. Маклейн при изучении расширений групп.
Темпоральная логика (англ. temporal (от лат. tempus) logic) — это логика, в высказываниях которой учитывается временной аспект. Используется для описания последовательностей явлений и их взаимосвязи по временной шкале.
Переписывание — широкий спектр техник, методов и теоретических результатов, связанных с процедурами последовательной замены частей формул или термов формального языка по заданной схеме — системе переписывающих правил.
Интервальная арифметика — математическая структура, которая для вещественных интервалов определяет операции, аналогичные обычным арифметическим. Эту область математики называют также интервальным анализом или интервальными вычислениями. Данная математическая модель удобна для исследования различных прикладных объектов...
Универсальная алгебра — раздел математики, изучающий общие свойства алгебраических систем, отыскивая общие черты между такими алгебраическими конструкциями, как группы, кольца, модули, решётки, вводя присущие им всем понятия и общие для всех них утверждения и результаты. Является разделом, занимающим промежуточное положение между математической логикой и общей алгеброй, как реализующий аппарат математической логики в применении к общеалгебраическим структурам.