Связанные понятия
Каррирование (от англ. currying, иногда — карринг) — преобразование функции от многих аргументов в набор функций, каждая из которых является функцией от одного аргумента. Возможность такого преобразования впервые отмечена в трудах Готтлоба Фреге, систематически изучена Моисеем Шейнфинкелем в 1920-е годы, а наименование получило по имени Хаскелла Карри — разработчика комбинаторной логики, в которой сведение к функциям одного аргумента носит основополагающий характер.
Теория типов — математически формализованная база для проектирования, анализа и изучения систем типов данных в теории языков программирования (раздел информатики). Многие программисты используют это понятие для обозначения любого аналитического труда, изучающего системы типов в языках программирования. В научных кругах под теорией типов чаще всего понимают более узкий раздел дискретной математики, в частности λ-исчисление с типами.
Зависимый тип (англ. dependent type) в информатике и логике — тип, который зависит от некоторого значения. Зависимые типы играют ключевую роль в интуиционистской теории типов и построении функциональных языков программирования таких как ATS, Agda и...
Алгоритмическая разрешимость — свойство формальной теории обладать алгоритмом, определяющим по данной формуле, выводима она из множества аксиом данной теории или нет. Теория называется разрешимой, если такой алгоритм существует, и неразрешимой, в противном случае. Вопрос о выводимости в формальной теории является частным, но вместе с тем важнейшим случаем более общей проблемы разрешимости.
Алгебраи́ческий тип да́нных — в информатике наиболее общий составной тип, представляющий собой тип-сумму из типов-произведений. Алгебраический тип имеет набор конструкторов, каждый из которых принимает на вход значения определённых типов и возвращает значение конструируемого типа. Конструктор представляет собой функцию, которая строит значение своего типа на основе входных значений. Для последующего извлечения этих значений из алгебраического типа используется сопоставление с образцом.
Тип-сумма (англ. sum type; также Σ-тип, меченое объединение) — конструкция в языках программирования и интуиционистской теории типов, тип данных, построенный как дизъюнктное объединение исходных типов.
Логика первого порядка , называемая иногда логикой или исчислением предикатов — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высших порядков.
Комбина́торная ло́гика — направление математической логики, занимающееся фундаментальными (то есть не нуждающимися в объяснении и не анализируемыми) понятиями и методами формальных логических систем или исчислений. В дискретной математике комбинаторная логика тесно связана с лямбда-исчислением, так как описывает вычислительные процессы.
Формальный язык в математической логике и информатике — множество конечных слов (строк, цепочек) над конечным алфавитом. Понятие языка чаще всего используется в теории автоматов, теории вычислимости и теории алгоритмов. Научная теория, которая имеет дело с этим объектом, называется теорией формальных языков.
Фу́нкция вы́сшего поря́дка — в программировании функция, принимающая в качестве аргументов другие функции или возвращающая другую функцию в качестве результата. Основная идея состоит в том, что функции имеют тот же статус, что и другие объекты данных. Использование функций высшего порядка приводит к абстрактным и компактным программам, принимая во внимание сложность производимых ими вычислений.
Автоматическое доказательство (англ. Automated Theorem Proving, ATP, а также Automated deduction) — доказательство, реализованное программно. В основе лежит аппарат математической логики. Используются идеи теории искусственного интеллекта. Процесс доказательства основывается на логике высказываний и логике предикатов.
Сопоставление с образцом (англ. Pattern matching) — метод анализа и обработки структур данных в языках программирования, основанный на выполнении определённых инструкций в зависимости от совпадения исследуемого значения с тем или иным образцом, в качестве которого может использоваться константа, предикат, тип данных или иная поддерживаемая языком конструкция.
Абстра́ктный тип да́нных (АТД) — это математическая модель для типов данных, где тип данных определяется поведением (семантикой) с точки зрения пользователя данных, а именно в терминах возможных значений, возможных операций над данными этого типа и поведения этих операций.
Логи́ческое программи́рование — парадигма программирования, основанная на автоматическом доказательстве теорем, а также раздел дискретной математики, изучающий принципы логического вывода информации на основе заданных фактов и правил вывода. Логическое программирование основано на теории и аппарате математической логики с использованием математических принципов резолюций.
В логике логи́ческими опера́циями называют действия, вследствие которых порождаются новые понятия, с использованием уже существующих. В более узком смысле, понятие логической операции используется в математической логике и программировании.
Подробнее: Логическая операция
Многозна́чная ло́гика — тип формальной логики, в которой допускается более двух истинностных значений для высказываний. Первую систему многозначной логики предложил польский философ Ян Лукасевич в 1920 году. В настоящее время существует очень много других систем многозначной логики, которые в свою очередь могут быть сгруппированы по классам. Важнейшими из таких классов являются частичные логики и нечёткие логики.
Символьные вычисления — это преобразования и работа с математическими равенствами и формулами как с последовательностью символов. Они отличаются от численных расчётов, которые оперируют приближёнными численными значениями, стоящими за математическими выражениями. Системы символьных вычислений (их так же называют системами компьютерной алгебры) могут быть использованы для символьного интегрирования и дифференцирования, подстановки одних выражений в другие, упрощения формул и т. д.
Тип-произведение (также Π-тип, произведение типов; англ. product type) — конструкция в языках программирования и интуиционистской теории типов, тип данных, построенный как декартово произведение исходных типов; другими словами — кортеж типов, или «кортеж как тип». Использованные типы и порядок их следования определяют сигнатуру типа-произведения; порядок следования объектов в создаваемом кортеже сохраняется на протяжении его времени жизни согласно заданной сигнатуре.
Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
Ленивые вычисления (англ. lazy evaluation, также отложенные вычисления) — применяемая в некоторых языках программирования стратегия вычисления, согласно которой вычисления следует откладывать до тех пор, пока не понадобится их результат. Ленивые вычисления относятся к нестрогим вычислениям. Усовершенствованная модель ленивых вычислений — оптимистичные вычисления — переходит в разряд недетерминированных стратегий вычисления.
Опера́ция — отображение, ставящее в соответствие одному или нескольким элементам множества (аргументам) другой элемент (значение). Термин «операция» как правило применяется к арифметическим или логическим действиям, в отличие от термина «оператор», который чаще применяется к некоторым отображениям множества на себя, имеющим замечательные свойства.
Вывод типов (англ. type inference) — в программировании возможность компилятора самому логически вывести тип значения у выражения. Впервые механизм вывода типов был представлен в языке ML, где компилятор всегда выводит наиболее общий полиморфный тип для всякого выражения. Это не только сокращает размер исходного кода и повышает его лаконичность, но и нередко повышает повторное использование кода.
Формальная верификация или формальное доказательство — формальное доказательство соответствия или несоответствия формального предмета верификации его формальному описанию. Предметом выступают алгоритмы, программы и другие доказательства.
Те́зис Чёрча — Тью́ринга — это гипотеза, постулирующая эквивалентность между интуитивным понятием алгоритмической вычислимости и строго формализованными понятиями частично рекурсивной функции и функции, вычислимой на машине Тьюринга. В связи с интуитивностью исходного понятия алгоритмической вычислимости, данный тезис носит характер суждения об этом понятии и его невозможно строго доказать или опровергнуть. Перед точным определением вычислимой функции математики часто использовали неофициальный термин...
Переменная типа (ти́повая переменная) в языках программирования и теории типов — переменная, которая может принимать значение из множества типов данных.
Реку́рсия — определение, описание, изображение какого-либо объекта или процесса внутри самого этого объекта или процесса, то есть ситуация, когда объект является частью самого себя. Термин «рекурсия» используется в различных специальных областях знаний — от лингвистики до логики, но наиболее широкое применение находит в математике и информатике.
Сема́нтика в программировании — дисциплина, изучающая формализации значений конструкций языков программирования посредством построения их формальных математических моделей. В качестве инструментов построения таких моделей могут использоваться различные средства, например, математическая логика, λ-исчисление, теория множеств, теория категорий, теория моделей, универсальная алгебра. Формализация семантики языка программирования может использоваться как для описания языка, определения свойств языка...
Переписывание — широкий спектр техник, методов и теоретических результатов, связанных с процедурами последовательной замены частей формул или термов формального языка по заданной схеме — системе переписывающих правил.
Ра́венство (отношение равенства) в математике — бинарное отношение, наиболее логически сильная разновидность отношений эквивалентности.
Логика Хоара (англ. Hoare logic, также Floyd—Hoare logic, или Hoare rules) — формальная система с набором логических правил, предназначенных для доказательства корректности компьютерных программ. Была предложена в 1969 году английским учёным в области информатики и математической логики Хоаром, позже развита самим Хоаром и другими исследователями. Первоначальная идея была предложена в работе Флойда, который опубликовал похожую систему в применении к блок-схемам (англ. flowchart).
Логика второго порядка в математической логике — формальная система, расширяющая логику первого порядка возможностью квантификации общности и существования не только над переменными, но и над предикатами. Логика второго порядка несводима к логике первого порядка. В свою очередь, она расширяется логикой высших порядков и теорией типов.
Теория автоматов — раздел дискретной математики, изучающий абстрактные автоматы — вычислительные машины, представленные в виде математических моделей — и задачи, которые они могут решать.
По одной из классификаций, языки программирования неформально делятся на сильно и слабо типизированные (англ. strongly and weakly typed), то есть обладающие сильной или слабой системой типов. Эти термины не являются однозначно трактуемыми, и чаще всего используются для указания на достоинства и недостатки конкретного языка. Существуют более конкретные понятия, которые и приводят к называнию тех или иных систем типов «сильными» или «слабыми».
Подробнее: Сильная и слабая типизация
Полнота по Тьюрингу — характеристика исполнителя (множества вычисляющих элементов) в теории вычислимости, означающая возможность реализовать на нём любую вычислимую функцию. Другими словами, для каждой вычислимой функции существует вычисляющий её элемент (например, машина Тьюринга) или программа для исполнителя, а все функции, вычисляемые множеством вычислителей, являются вычислимыми функциями (возможно, при некотором кодировании входных и выходных данных).
Объектами
первого класса (англ. first-class object, first-class entity, first-class citizen) в контексте конкретного языка программирования называются элементы, которые могут быть переданы как параметр, возвращены из функции, присвоены переменной.
Параметрический полиморфизм в языках программирования и теории типов — свойство семантики системы типов, позволяющее обрабатывать значения разных типов идентичным образом, то есть исполнять физически один и тот же код для данных разных типов.
Форма́льная систе́ма (форма́льная тео́рия, аксиоматическая теория, аксиоматика, дедуктивная система) — результат строгой формализации теории, предполагающей полную абстракцию от смысла слов используемого языка, причем все условия, регулирующие употребление этих слов в теории, явно высказаны посредством аксиом и правил, позволяющих вывести одну фразу из других.
В теории типов и функциональных языках программирования конструктор алгебраического типа данных или просто конструктор представляет собой функцию с пустым телом, конструирующую объект алгебраического типа данных. Оптимизирующие компиляторы исполняют эти функции статически, т.е. на этапе компиляции.
Подробнее: Конструктор (функциональное программирование)
В теории
типов, конструктор типов представляет собой конструкцию полиморфно типизируемого формального языка, которая строит новые типы из старых.
Пролог (англ. Prolog) — язык и система логического программирования, основанные на языке предикатов математической логики дизъюнктов Хорна, представляющей собой подмножество логики предикатов первого порядка.
Система типов — совокупность правил в языках программирования, назначающих свойства, именуемые типами, различным конструкциям, составляющим программу — таким как переменные, выражения, функции или модули. Основная роль системы типов заключается в уменьшении числа багов в программах посредством определения интерфейсов между различными частями программы и последующей проверки согласованности взаимодействия этих частей. Эта проверка может происходить статически (на стадии компиляции) или динамически...
Идиома программирования — устойчивый способ выражения некоторой составной конструкции в одном или нескольких языках программирования. Идиома является шаблоном решения задачи, записи алгоритма или структуры данных путём комбинирования встроенных элементов языка.
Маши́на Тью́ринга (МТ) — абстрактный исполнитель (абстрактная вычислительная машина). Была предложена Аланом Тьюрингом в 1936 году для формализации понятия алгоритма.
В информатике, спи́сок (англ. list) — это абстрактный тип данных, представляющий собой упорядоченный набор значений, в котором некоторое значение может встречаться более одного раза. Экземпляр списка является компьютерной реализацией математического понятия конечной последовательности.
Подробнее: Список (информатика)
Мона́да — это абстракция линейной цепочки связанных вычислений. Монады позволяют организовывать последовательные вычисления.
Исчисление процессов или алгебра процессов — семейство связанных подходов к формальному моделированию параллельных систем.
Теория вычислимости , также известная как теория рекурсивных функций, — это раздел современной математики, лежащий на стыке математической логики, теории алгоритмов и информатики, возникшей в результате изучения понятий вычислимости и невычислимости. Изначально теория была посвящена вычислимым и невычислимым функциям и сравнению различных моделей вычислений. Сейчас поле исследования теории вычислимости расширилось — появляются новые определения понятия вычислимости и идёт слияние с математической...
Конструктивная математика — абстрактная наука о конструктивных процессах, человеческой способности осуществлять их, и об их результатах — конструктивных объектах.
Сравне́ние в программировании — общее название ряда операций над па́рами значений одного типа, реализующих математические отношения равенства и порядка. В языках высокого уровня такие операции, чаще всего, возвращают булево значение («истина» или «ложь»).
Логика высказываний , или пропозициональная логика (лат. propositio — «высказывание»), или исчисление высказываний — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.