Связанные понятия
Поворо́т (враще́ние) — движение, при котором по крайней мере одна точка плоскости (пространства) остаётся неподвижной.
Враща́тельное движе́ние — вид механического движения. При вращательном движении материальная точка описывает окружность. При вращательном движении абсолютно твёрдого тела все его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной...
Поступа́тельное движе́ние — механическое движение системы точек (абсолютно твёрдого тела), при котором отрезок прямой, связывающий две любые точки этого тела, форма и размеры которого во время движения не меняются, остаётся параллельным своему положению в любой предыдущий момент времени. При поступательном движении все точки тела описывают одну и ту же траекторию (с точностью до постоянного смещения в пространстве) и в любой данный момент времени имеют одинаковые по направлению и абсолютной величине...
Углы Эйлера — углы, описывающие поворот абсолютно твердого тела в трёхмерном евклидовом пространстве.
Моме́нт ине́рции — скалярная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).
Упоминания в литературе
То, что
вращение громадного большинства астероидов совершается вокруг единственной оси, сохраняющей свое направление в пространстве, подтверждается наблюдениями: световые кривые, как правило, являются строго периодическими с единственным и притом неизменным периодом. Такие кривые соответствуют вращению астероидов вокруг оси наибольшего момента инерции тела. Если представить фигуру астероида в виде трехосного эллипсоида, то вращение происходит вокруг его самой короткой главной оси. При отсутствии сил, не проходящих через центр инерции астероида, такой характер вращения может продолжаться произвольно долго. Если в результате нецентрального столкновения с другим телом ось вращения астероида будет выведена из этого состояния, движение астероида относительно его центра инерции приобретет характер кувыркания: ось вращения с течением времени не сохраняет свое положение в теле астероида и в зависимости от его формы (эллипсоида инерции) и величины полученного импульса перемещается более или менее сложным образом. Наблюдатель отмечает, что кривая блеска меняется сложным образом в соответствии с изменениями ориентации оси вращения. Такое вращение астероида сопряжено с постоянным изменением центробежных сил и сил сцепления между частицами вещества, что приводит для неупругого тела к потере энергии вращения и постепенному возвращению к состоянию вращения вокруг оси наибольшего момента инерции. В работе [Burns and Safronov, 1973] было показано, что процесс затухания сложного вращения астероидов протекает весьма быстро и практически все астероиды должны наблюдаться в состоянии вращения вокруг оси наибольшего момента инерции. Впоследствии А. Харрис пересмотрел этот вывод [Harris, 1994]. Согласно последней работе, для ряда небольших по величине и медленно вращающихся астероидов время затухания сложного вращения может превышать 108 лет, а для некоторых – даже превосходить время существования Солнечной системы.
Другое возможное объяснение изменения осей
вращения планет – их слабые приливные взаимодействия друг с другом. Расчеты этих взаимодействий (Laskar и Robutel, 1993) показывают, что в широком диапазоне периодов вращения (приблизительно от 100 до 400 часов для Меркурия и от 20 до 100 часов для Венеры) положение оси вращения испытывает хаотические колебания на промежутках времени в миллионы лет, при этом наклон оси может изменяться от 0 до 90 градусов. Следовательно, когда периоды вращения Меркурия и Венеры проходили эти диапазоны, положение их осей изменилось и стерло все следы исходного положения. Когда приливное трение Солнца затормозило их вращение сильнее и вывело из диапазона неустойчивости, наклоны осей Меркурия и Венеры перестали изменяться и застыли на современных значениях.
Момент импульса выглядит аналогично, но применим к телам, которые движутся не по прямой, а вращаются. Определить момент импульса даже для единственной частицы – дело непростое, но он, как и импульс, зависит и от массы частицы, и от величины и направления ее скорости. Основная новая черта – то, что момент импульса зависит также от оси
вращения , то есть линии, вокруг которой частицы, как считается, вращаются. Представьте себе вращающийся волчок. Он вращается вокруг линии, проходящей через его середину, так что каждая частица вещества в нем вращается вокруг этой оси. Момент импульса частицы относительно этой оси равен скорости ее вращения, умноженной на ее массу. Но направление, на которое указывает момент импульса, соответствует направлению вдоль оси вращения, то есть под прямым углом к плоскости, где вращается частица. Момент импульса всего волчка целиком, опять же взятый относительно оси, получается сложением моментов импульса всех составляющих его частиц с учетом направления, если это необходимо.
Человека рассматривают как твердое тело конечных размеров тогда, когда важно учитывать не только его местоположение в пространстве, но и ориентацию тела (в частности, при изучении условий статического равновесия человека, а также его
вращения в постоянной позе). Так, парашютист, выполняющий в затяжном прыжке элементы воздушной акробатики, перемещается в пространстве относительно неподвижной (земной) системы координат ХYZ. При этом ось OY направлена по нормали к поверхности Земли, ось ОХ – по касательной к горизонту, ось OZ – перпендикулярно первым двум осям.
Не сразу было понято, что причиной строгой периодичности радиоимпульсов от этих новых источников (получивших название «пульсары») является быстрое
вращение звездообразных объектов. Только вращение массивного тела может объяснить удивительное постоянство (с точностью до стомиллионной доли) периодов пульсаров. Более тщательные наблюдения показали, что на самом деле периоды не строго постоянны, а медленно растут. Представим себе, что излучение радиоволн не равномерно по всем направлениям, а сосредоточено внутри некоторого конуса, ось которого образует определенный угол с осью вращения. Теперь вообразим себе наблюдателя, который в какой-то момент времени находится на продолжении оси конуса. Ясно, что он сможет наблюдать радиоизлучение. Это будет возможно в течение некоторого времени до тех пор, пока из-за вращения звезды ось конуса уйдет достаточно далеко. Однако через промежуток времени, равный периоду вращения звезды, радиоизлучение снова можно будет наблюдать. Эта простая модель пульсара изображена на рис. 10.
Связанные понятия (продолжение)
Углова́я ско́рость — величина, характеризующая скорость вращения материальной точки вокруг центра вращения. Для вращения в двухмерном пространстве угловая скорость выражается числом, в трёхмерном пространстве представляется псевдовектором (аксиальным вектором), а в общем случае — кососимметрическим тензором.
Центр масс , центр ине́рции, барице́нтр (от др.-греч. βαρύς — тяжёлый + κέντρον — центр) — (в механике) - геометрическая точка, характеризующая движение тела или системы частиц как целого. В общем случае центр масс не совпадает с центром тяжести, совпадение происходит только у систем материальных точек и тел с однородной по объёму плотностью в однородном гравитационном поле.
Абсолю́тно твёрдое те́ло — второй опорный объект механики наряду с материальной точкой. Механика абсолютно твёрдого тела полностью сводима к механике материальных точек (с наложенными связями), но имеет собственное содержание (полезные понятия и соотношения, которые могут быть сформулированы в рамках модели абсолютно твёрдого тела), представляющее большой теоретический и практический интерес.
В физике, при рассмотрении нескольких систем отсчёта (СО), возникает понятие сложного движения — когда материальная точка движется относительно какой-либо системы отсчёта, а та, в свою очередь, движется относительно другой системы отсчёта. При этом возникает вопрос о связи движений точки в этих двух системах отсчета (далее СО).
Подробнее: Сложное движение
Начало координат (начало отсчёта) в евклидовом пространстве — особая точка, обычно обозначаемая буквой О, которая используется как точка отсчёта для всех остальных точек. В евклидовой геометрии начало координат может быть выбрано произвольно в любой удобной точке.
У́гол — геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки (которая называется вершиной угла).
Центростремительное ускорение — компонента ускорения точки, характеризующая быстроту изменения направления вектора скорости для траектории с кривизной (вторая компонента, тангенциальное ускорение, характеризует изменение модуля скорости). Направлено к центру кривизны траектории, чем и обусловлен термин. Термин «центростремительное ускорение» эквивалентен термину «нормальное ускорение». Ту составляющую суммы сил, которая обуславливает это ускорение, называют центростремительной силой.
Круговое движение является ускоренным, даже если происходит с постоянной угловой скоростью, потому что вектор скорости объекта постоянно меняет направление. Такое изменение направления скорости вызывает ускорение движущегося объекта центростремительной силой, которая толкает движущийся объект по направлению к центру круговой орбиты. Без этого ускорения объект будет двигаться прямолинейно в соответствии с законами Ньютона.
Пра́вило буравчика (пра́вило винта́) — варианты мнемонического правила для определения направления векторного произведения и тесно связанного с этим выбора правого базиса в трёхмерном пространстве, соглашения о положительной ориентации базиса в нём, и соответственно — знака любого аксиального вектора, определяемого через ориентацию базиса.
Наклонная плоскость — это плоская поверхность, установленная под углом к горизонтали. Наклонная плоскость является одним из простых механизмов. Она позволяет поднимать груз вверх, прикладывая к нему усилие, заметно меньшее, чем сила тяжести, действующая на этот груз.
Норма́ль — прямая, ортогональная (перпендикулярная) касательному пространству (касательной прямой к кривой, касательной плоскости к поверхности и так далее).
Поверхность вращения — поверхность, образуемая при вращении вокруг прямой (оси поверхности) произвольной линии (прямой, плоской или пространственной кривой). Например, если прямая пересекает ось вращения, то при её вращении получится коническая поверхность, если параллельна оси — цилиндрическая, если скрещивается с осью — гиперболоид. Одна и та же поверхность может быть получена вращением самых разнообразных кривых.
Си́ла упру́гости — сила, возникающая в теле в результате его деформации и стремящаяся вернуть его в исходное (начальное) состояние.
Физи́ческий ма́ятник — осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.
Систе́ма координа́т — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.
Механи́ческим движе́нием тела называется изменение его положения в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики.
Подробнее: Механическое движение
Ма́ятник — система, подвешенная в поле тяжести и совершающая механические колебания. Колебания совершаются под действием силы тяжести, силы упругости и силы трения. Во многих случаях трением можно пренебречь, а от сил упругости (либо сил тяжести) абстрагироваться, заменив их связями.
Механи́ческое равнове́сие — состояние механической системы, при котором сумма всех сил, действующих на каждую её частицу, равна нулю и сумма моментов всех сил, приложенных к телу относительно любой произвольно взятой оси вращения, также равна нулю.
Центробе́жная си́ла — составляющая фиктивных сил инерции, которую вводят при переходе из инерциальной системы отсчёта в соответствующим образом вращающуюся неинерциальную. Это позволяет в полученной неинерциальной системе отсчёта продолжать применять законы Ньютона для расчёта ускорения тел через баланс сил.
Си́ла ине́рции (также инерционная сила) — многозначное понятие, применяемое в механике по отношению к трём различным физическим величинам. Одна из них — «даламберова сила инерции» — вводится в инерциальных системах отсчёта для получения формальной возможности записи уравнений динамики в виде более простых уравнений статики. Другая — «эйлерова сила инерции» — используется при рассмотрении движения тел в неинерциальных системах отсчёта. Наконец, третья — «ньютонова сила инерции» — сила противодействия...
Силовая линия, или интегральная кривая, — это кривая, касательная к которой в любой точке совпадает по направлению с вектором, являющимся элементом векторного поля в этой же точке. Применяется для визуализации векторных полей, которые сложно наглядно изобразить каким-либо другим образом. Иногда (не всегда) на этих кривых ставятся стрелочки, показывающие направление вектора вдоль кривой. Для обозначения векторов физического поля, образующих силовые линии, обычно используется термин «напряжённость...
Подробнее: Силовые линии векторного поля
Кривизна ́ — собирательное название ряда характеристик (скалярных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т. д.) от соответствующих «плоских» объектов (прямая, плоскость, евклидово пространство и т. д.).
Те́ло геометри́ческое — «то, что имеет длину, ширину и глубину» в «Началах» Евклида, в учебниках элементарной геометрии ко всему «часть пространства, ограниченная своей образуемой формой».
Тела вращения — объёмные тела, возникающие при вращении плоской геометрической фигуры, ограниченной кривой, вокруг оси, лежащей в той же плоскости.
Сила F, действующая на точку P, называется центральной с центром в точке O, если во всё время движения она действует вдоль линии, соединяющей точки O и P.
Ориента́ция , в классическом случае — выбор одного класса систем координат, связанных между собой «положительно» в некотором определённом смысле.
Траекто́рия материа́льной то́чки — линия в пространстве, по которой движется тело, представляющая собой множество точек, в которых находилась, находится или будет находиться материальная точка при своём перемещении в пространстве относительно выбранной системы отсчёта.
Координаты Борна в специальной теории относительности — система координат, применяемая для описания вращающейся окружности или (в более общем смысле) диска.
Теоре́ма о сложе́нии скоросте́й — одна из теорем кинематики, связывает между собой скорости материальной точки в различных системах отсчёта. Утверждает, что при сложном движении материальной точки её абсолютная скорость равна сумме относительной и переносной скоростей.
Простейшие механизмы — устройства, служащие для преобразования направления и величины (модуля) силы. Представляют собой элементы более сложных механизмов. Некоторые из простейших механизмов появились в глубокой древности.
Подробнее: Простейший механизм
Пара́бола (греч. παραβολή — приложение) — геометрическое место точек, равноудалённых от данной прямой (называемой директрисой параболы) и данной точки (называемой фокусом параболы).
Кватернионы предоставляют удобное математическое обозначение положения и вращения объектов в пространстве. В сравнении с углами Эйлера, кватернионы позволяют проще комбинировать вращения, а также избежать проблемы, связанной с невозможностью поворота вокруг оси, независимо от совершённого вращения по другим осям (на иллюстрации). В сравнении с матрицами они обладают большей вычислительной устойчивостью и могут быть более эффективными. Кватернионы нашли своё применение в компьютерной графике, робототехнике...
Эта статья о физическом понятии. О более общем значении термина, см. статью СкалярСкалярная величина (от лат. scalaris — ступенчатый) в физике — величина, каждое значение которой может быть выражено одним действительным числом. То есть скалярная величина определяется только значением, в отличие от вектора, который кроме значения имеет направление. К скалярным величинам относятся длина, площадь, время, температура и т. д.Скалярная величина, или скаляр согласно математическому энциклопедическому словарю...
Подробнее: Скалярная величина
Ось (от праславян. ость) — серединная линия. В ботанике устаревшая форма — ость — продолжает использоваться.
Ве́кторная величина ́ — физическая величина, являющаяся вектором (тензором ранга 1). Противопоставляется с одной стороны скалярным (тензорам ранга 0), с другой — тензорным величинам (строго говоря — тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.
Неинерциа́льная систе́ма отсчёта — система отсчёта, движущаяся с ускорением или поворачивающаяся относительно инерциальной. Второй закон Ньютона также не выполняется в неинерциальных системах отсчёта. Для того чтобы уравнение движения материальной точки в неинерциальной системе отсчёта по форме совпадало с уравнением второго закона Ньютона, дополнительно к «обычным» силам, действующим в инерциальных системах, вводят силы инерции.
Геометри́ческое ме́сто то́чек (ГМТ) — фигура речи в математике, употребляемая для определения геометрической фигуры как множества точек, обладающих некоторым свойством.
Тор (тороид) — поверхность вращения, получаемая вращением образующей окружности вокруг оси, лежащей в плоскости этой окружности и не пересекающей её.
Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности (например, бутылка Клейна), которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.
Каса́тельная пряма́я — прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.
Паралле́льный перено́с (иногда трансляция) ― частный случай движения, при котором все точки пространства перемещаются в одном и том же направлении на одно и то же расстояние.
Волново́й фронт — поверхность, до которой дошёл волновой процесс к данному моменту времени.
Сфе́ра (др.-греч. σφαῖρα «мяч, шар») — это геометрическое место точек в пространстве, равноудаленных от некоторой заданной точки (центра сферы).
Вращательная симметрия — термин, означающий симметрию объекта относительно всех или некоторых собственных вращений m-мерного евклидова пространства. Собственными вращениями называются разновидности изометрии, сохраняющие ориентацию. Таким образом, группа симметрии, отвечающая вращениям, есть подгруппа группы E+(m) (см. Евклидова группа).
Упоминания в литературе (продолжение)
Смещение – линейное движение, при котором все точки тела перемещаются равномерно вдоль оси в одном направлении. Например, линейным является движение поезда в тоннеле.
Вращение – движение, при котором все точки тела неравномерно перемещаются вокруг оси, пронизывающей плоскость. Точки, расположенные ближе к оси, вращаются с меньшей скоростью, чем расположенные дальше от нее. Вращение колес машины, или падение спиленного дерева отражают закономерности вращательного движения.
До сих пор мы рассматривали только движение точки М под действием
вращений третьей и четвертой сферы. Но сейчас мы должны вспомнить, что ось АВ обращается вокруг эклиптики в течение сидерического периода планеты. Во время этого движения продольная ось лемнискаты всегда совпадает с эклиптикой, по которой кривая движется с одинаковой скоростью. Поэтому для третьей и четвертой сферы мы можем заменить лемнискату, по которой планета движется вышеописанным образом. Сочетание этого движения с движением кривой по эклиптике дает видимое движение планеты через созвездия. Движение планеты по лемнискате состоит в колебании вперед и назад, причем период равен синодическому периоду обращения, и в первой половине этого периода движение планеты по эклиптике ускоряется, а во второй половине – замедляется, когда два движения совершаются в противоположных направлениях. Поэтому, когда на дуге лемнискаты обратное колебание происходит быстрее, чем одновременное движение вперед самой лемнискаты, планета какое-то время движется в обратную сторону, до и после чего она некоторое время находится в неподвижном состоянии, пока оба движения уравновешивают друг друга. Очевидно, что наибольшее ускорение и наибольшее замедление имеют место, когда планета проходит через двойную точку лемнискаты. Таким образом, движения должны быть настолько сложны, что планета проходит через эту точку при поступательном движении во время верхнего соединения с Солнцем, где видимая скорость планеты по долготе наибольшая, тогда как она снова должна быть в двойной точке, но двигаться в обратном направлении во время противостояния или нижнего соединения, когда видимая скорость планеты при попятном движении максимальна. Такое сочетание движений, конечно, должно сопровождаться определенной долей движения по широте в зависимости от ширины лемнискаты.
У Земли два вида движения. Она движется вокруг Солнца по твердо установленному пути, который называется орбитой. Время, которое требуется Земле для прохождения этой орбиты, называется годом. Земля также вращается вокруг своей оси. Время, необходимое для этого, называется сутками. Направление оси очень медленно меняется. Это движение называется прецессией. Другие планеты также вращаются вокруг Солнца и вокруг своей оси, но скорость их
вращения отличается от земной.
Простой жесткий карданный механизм – шарнир Гука, оси
вращения I, II, III, IV этого шарнира пересекаются под углом – в неподвижной точке О центра сферы с радиусом ОВ = ОВ' = ОС = ОС'. В случае, если угол пересечения находится в пределах от 0 до 90°, шарниры В, В', С, С' попарно очерчивают окружность равносильного радиуса в плоскостях, которые перпендикулярны осям I и II, что позволяет создавать передачу вращения с переменным углом α. Механизм такого типа характеризуется неравномерностью скорости вращения ведомого вала, в результате постоянной скорости ведущего вала. Скорость ведомого вала увеличивается с повышением угла α в том случае когда он равняется 90°, передача вращения при помощи карданного механизма делается невозможной.
Угловая скорость есть вектор, который направлен по оси
вращения и связан с направлением вращения. Вектор угловой скорости в отличие от векторов скорости и силы является скользящим. Таким образом, задание вектора w указывает положение оси вращения, направление вращения и модуль угловой скорости. Быстрота изменения угловой скорости характеризуется угловым ускорением, равным первой производной от угловой скорости по времени:
Солнце вращается вокруг своей оси, но не как твердое тело, поскольку оно является газовым (плазменным) шаром. Скорость
вращения в конвективной зоне различна на разной глубине и разных широтах. Приповерхностные слои в экваториальных областях делают один оборот за 25 дней, а в полярных – за 38 дней. По мере продвижения внутрь Солнца, к границе конвективной и лучистой зон, угловые скорости вращения выравниваются. Лучистая зона и ядро вращаются уже как твердое тело с периодом около 27 дней. Профиль скорости вращения на разных глубинах и широтах, как и многие другие свойства солнечных недр, в настоящее время с достаточной точностью измеряется методами гелиосейсмологии – раздела астрофизики, изучающего колебания Солнца.
Характерной чертой фигурного катания является наличие большого количества движений вращательного характера. Даже при простом скольжении одна окружность соответствует одному обороту вокруг продольной оси тела. Элемент
вращения присутствует при выполнении всех без исключения движениях фигуриста, не говоря уже о многооборотных прыжках, где за 0,5–0,8 с. фигурист выполняет 3–4 оборота (Кулибанова Ю. Л., 1999).
Если траектория имеет горизонтальное движение, то мячу сообщается максимальное ускорение и сила,
вращение здесь как таковое отсутствует. Такой удар называется подставкой.
Итак, даже простейшие «резинопленочные» модели показывают, что нас невидимо раскачивает гравитационный прибой. Правда, не всякое перемещение звезд может вызвать гравитационное излучение. Например, для испускания волн гравитации не подойдет
вращение по симметричной орбите. В этом случае центростремительное ускорение строго симметрично, его гравитационное поле остается однородным, так что волны гравитации возникнуть не могут. А вот если взять коромысло с двумя очень серьезными массами и раскрутить в точке равновесия, то гравитационное поле такой бинарной (двойной) системы начнет изменяться пропорционально частоте вращения, и от коромысла во все стороны побежит пространственно-временная рябь волн тяготения.
Начнем с затверженного в школе положения, что земная ось составляет с плоскостью орбиты Земли угол в 661/2° (около 3/4 прямого угла). Вы хорошо поймете значение этого факта лишь тогда, когда вообразите, что угол наклона иной, – составляет не 3/4 прямого угла, а, например, целый прямой. Иначе говоря, представьте себе, что ось
вращения Земли перпендикулярна к плоскости орбиты, как мечтали сделать члены Пушечного клуба в фантастическом романе Жюля Верна «Вверх дном». Какие изменения вызвало бы это в привычном обиходе природы?
Начнем с затверженного в школе положения, что земная ось составляет с плоскостью орбиты Земли угол в 66½° (около 3/4 прямого угла). Вы хорошо поймете значение этого факта лишь тогда, когда вообразите, что угол наклона иной, – составляет не 3/4 прямого угла, а, например, целый прямой. Иначе говоря, представьте себе, что ось
вращения Земли перпендикулярна к плоскости орбиты, как мечтали сделать члены Пушечного клуба в фантастическом романе Жюля Верна «Вверх дном». Какие изменения вызвало бы это в привычном обиходе природы?
При работе в трехмерном пространстве в AutoCAD все системы координат формируются по правилу правой руки. Оно определяет положительное направление оси Z трехмерной системы координат при известных направлениях осей X и Y, а также положительное направление
вращения вокруг любой из осей трехмерных координат.
Механика указывает и другой путь к ослаблению земной тяжести. Он состоит в том, чтобы ускорить быстроту
вращения Земли вокруг оси. Уже и теперь центробежный эффект вращения земного шара уменьшает вес каждого тела на экваторе на ½90 долю. В соединении с другой причиной (вздутием земного шара у экватора) вращение Земли действует так, что все тела на экваторе весят на 0,5 % меньше, чем близ полюсов. Паровоз, весящий в Москве 60 т, становится по прибытии в Архангельск на 60 кг тяжелее, а в Одессу – на столько же легче. Партия угля в 5000 т, доставленная со Шпицбергена в экваториальный порт, уменьшилась бы в весе на 20 т, если бы приемщику пришла фантазия принять груз, пользуясь пружинными весами, выверенными на Шпицбергене. Линкор, весящий в Архангельске 20 000 т, становится по прибытии в экваториальные воды легче на 80 т; но это, конечно, неощутительно, так как соответственно легче делаются и все другие тела, не исключая и воду в океане. Разницу веса похищает главным образом центробежный эффект: на экваторе он несколько больше, чем в удаленных от него широтах, где точки земной поверхности при вращении Земли описывают гораздо меньшие круги.
Дифференциал состоит из корпуса 1, в котором установлена крестовина 3. На нее одеты четыре шестерни 4, называемые сателлитами. Сателлиты находятся в постоянном зацепление с двумя полуосевыми шестернями 2, полуосей 8 и 7 (правой и левой). Оси шестерен 4 жестко связаны с корпусом дифференциала 1.Крестовина вместе с сателлитами закреплена в коробке дифференциала и вращается вместе с ней. При движении автомобиля по прямой, оба колеса проходят одинаковые пути, сателлиты, вращаются как одно целое с коробкой дифференциала и коническим колесом (ведомым колесом большего размера) и сообщают обеим полуосевым шестерням 2 одинаковую частоту
вращения . Шестерни – сателлиты при этом вокруг своих осей не вращаются. Когда одна из шестерен 2 замедлит движение, сателлиты начинают вращаться вокруг своих осей, из –за чего другая из шестерен 2, связанные с полуосью 7или 8 и ведущими колесами, будет вращаться быстрее, а следовательно и колесо, описывающее больший путь, начинает вращаться быстрее.
Теперь легко будет понять устройство заколдованной сферы. Дно ее (см. рис. 36) составляет большая вращающаяся платформа, которой придана кривизна параболоида. Хотя
вращение , благодаря скрытому под платформой механизму, совершается чрезвычайно плавно, но все же люди на платформе испытывали бы головокружение, если бы все окружающие предметы не перемещались вместе с ними. Чтобы избежать этого и не дать возможности наблюдателю догадаться, что он движется, вращающуюся платформу помещают внутри большого шара, непрозрачные стенки которого движутся с такою же скоростью, как и сама платформа.