Связанные понятия
Праймориал (англ. Primorial, иногда именуется также «примориал») — в теории чисел функция над рядом натуральных чисел, схожая с функцией факториала, с разницей в том, что праймориал является последовательным произведением простых чисел, меньших или равных данному, в то время как факториал является последовательным произведением всех натуральных чисел, меньших или равных данному.
Недоста́точное число́ — натуральное число, сумма собственных делителей которого меньше самого числа.
Подробнее: Недостаточные числа
Слегка ́ избы́точное число́, или квазисоверше́нное число́ (от лат. quas(i) «наподобие», «нечто вроде») — избыточное число, сумма собственных делителей которого на единицу больше самого числа.
Обручённые числа или квази-дружественные числа это два положительных целых числа, для которых сумма собственных делителей каждого числа на 1 больше, чем второе число. Другими слова, (m, n) — это пара обручённых чисел если s(m) = n + 1 и s(n) = m + 1, где s(n) это сумма собственных делителей числа n (аликвотная сумма от n). Эквивалентным условием будет σ1(m) = σ1(n) = m + n + 1, где σ1(n) — сумма всех делителей числа n.
Практичное число или панаритмичное число — это положительное целое число n, такое что все меньшие положительные целые числа могут быть представлены в виде суммы различных делителей числа n. Например, 12 является практичным числом, поскольку все числа от 1 до 11 можно представить в виде суммы делителей 1, 2, 3, 4 и 6 этого числа — кроме самих делителей, мы имеем 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1 и 11 = 6 + 3 + 2.
Числа харшад , или числа Нивена, — натуральные числа, делящиеся нацело на сумму своих цифр.
В теории чисел гладким числом называется целое число, все простые делители которого малы.
Подробнее: Гладкое число
Эта страница содержит
список первых 500 простых чисел, а также списки некоторых специальных типов простых чисел.
Неприкоснове́нное число ́ (англ. Untouchable number) — положительное целое число, которое не может быть выражено как сумма всех собственных делителей любого целого положительного числа (в том числе самого неприкосновенного числа).
Сюрреальные числа (англ. surreal number — название принадлежит американскому математику Дональду Кнуту) впервые были использованы под другим названием («числа» — англ. number) в работах английского математика Джона Конвея для описания ряда аспектов теории игр.
Дели́мость — одно из основных понятий арифметики и теории чисел, связанное с операцией деления. С точки зрения теории множеств, делимость целых чисел является отношением, определённым на множестве целых чисел.
n-ое
число такси , обычно обозначаемое Ta(n) или Taxicab(n), определяется как наименьшее число, которое может быть представлено как сумма двух положительных кубов n различными способами. Наиболее известное число такси — 1729 = Ta(2) = 13 + 123 = 93 + 103.
Безопасное простое число — это простое число вида 2p + 1, где p также простое (и наоборот, p есть простое число Софи Жермен). Несколько первых безопасных простых чисел...
Составно́е число ́ (в XIX веке также сложное число) — натуральное число, бо́льшее 1, не являющееся простым. Каждое составное число является произведением двух или более натуральных чисел, бо́льших 1.
В комбинаторной математике под числом встреч понимается число перестановок множества {1, ..., n} с заданным числом неподвижных элементов.
Подробнее: Число встреч (комбинаторика)
Псевдопростое число — натуральное число, обладающее некоторыми свойствами простых чисел, являясь тем не менее составным. В зависимости от рассматриваемых свойств существует несколько различных типов псевдопростых чисел.
В математике, числа
негафибоначчи — отрицательно индексированные элементы последовательности чисел Фибоначчи.
Наиме́ньшее о́бщее кра́тное (НОК) двух целых чисел m и n есть наименьшее натуральное число, которое делится на m и n без остатка. Обозначается одним из следующих способов...
Функция делителей — арифметическая функция, связанная с делителями целого числа. Функция известна также под именем функция дивизоров.
Тождество максимумов и минимумов — математическое соотношение между максимальным элементом конечного множества чисел и минимальными элементами всех его непустых подмножеств.
Теорема об уголках — доказанный результат в области аддитивной комбинаторики, утверждающий присутствие некой упорядоченной (в арифметическом смысле) структуры, называемой уголком, в достаточно больших двумерных множествах любой фиксированной плотности.
Четыре четверки — математическая головоломка по поиску простейшего математического выражения для каждого целого числа от 0 до некоторого максимума, используя лишь общие математические символы и четвёрки (никакие другие цифры не допускаются). Большинство версий «четырёх четверок» требует, чтобы каждое выражение содержало ровно четыре четверки, но некоторые вариации требуют, чтобы каждое выражение имело минимальное количество четверок.
Полуинвариант ы, или семиинварианты, или кумулянты — коэффициенты в разложении логарифма характеристической функции случайной величины в ряд Маклорена.
Число Райо — большое число, названное в честь Агустина Райо, который объявил самое большое число с собственным именем. Изначально ему было дано точное определение на «дуэли больших чисел» в Массачусетском технологическом институте 26 января 2007 года.
Суперпростые числа (также известны как простые числа высшего порядка) — это подмножество простых чисел, стоящих в списке простых чисел на позициях, являющихся простыми числами (то есть это 2-е, 3-е, 5-е, 7-е, 11-е, 13-е, 17-е и т.д. по счёту простые числа).
Подробнее: Суперпростое число
В комбинаторике,
Числа Нараяны N(n, k), n = 1, 2, 3 ..., 1 ≤ k ≤ n, формируют треугольную матрицу натуральных чисел, называемую Треугольником Нараяны, который всплывает во многих задачах перечислительной комбинаторики. Названы в честь индийского математика Т. В. Нараяны (1930–1987).
Сре́днее арифмети́ческое (в математике и статистике) множества чисел — число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
Доля единицы (аликвотная дробь) — это рациональное число в виде дроби, числитель которой равен единице, а знаменатель — положительное целое число. Доля единицы, таким образом, является обратным числом положительного целого числа, 1/n. Примеры — 1/1, 1/2, 1/3, 1/4 и т. д.
Дедеки́ндово сече́ние (или у́зкая щель) — один из способов построения вещественных чисел из рациональных.
Закон больших чисел (ЗБЧ) в теории вероятностей — принцип, описывающий результат выполнения одного и того же эксперимента много раз. Согласно закону, среднее значение конечной выборки из фиксированного распределения близко к математическому ожиданию этого распределения.
Рациональное решето — это алгоритм общего вида для разложения целых чисел на простые множители. Алгоритм является частным случаем общего метода решета числового поля. Хотя он менее эффективен, чем общий алгоритм, концептуально он проще. Алгоритм может помочь понять, как работает общий метод решета числового поля.
Вероятностный метод — неконструктивный метод доказательства существования математического объекта с заданными свойствами. В основном используется в комбинаторике, но также и в теории чисел, линейной алгебре и математическом анализе, а также в информатике (например, метод вероятностного округления) и теории информации.
Последовательность без простых чисел — это последовательность целых чисел, не содержащая каких-либо простых чисел. Как правило, при этом предполагается, что последовательность задана той же рекуррентной формулой, что и для чисел Фибоначчи, но с другими начальными условиями, и все члены последовательности должны быть cоставными числами, не имеющими общего для всех членов делителя. Таким образом, последовательность этих чисел определяется путём выбора двух составных чисел a1 и a2, для которых наибольший...
Коэффициент сетчатости — инвариант планарных графов, измеряющий число ограниченных граней графа по отношению к возможному числу граней других планарных графов с тем же числом вершин. Коэффициент принимает значения от 0 для деревьев до 1 для максимальных планарных графов.
Номиналы промышленно выпускаемых электронных компонентов (сопротивление резисторов, ёмкость конденсаторов, индуктивность небольших катушек индуктивности) не являются произвольными. Существуют установленные стандартом специальные ряды номиналов, представляющие собой множества значений от 1 до 10. Номинал детали определённого ряда является некоторым значением из соответствующего ряда, умноженным на произвольный десятичный множитель (10 в целой степени).
Подробнее: Ряды номиналов радиодеталей
Прямоуго́льное число ́ — число, являющееся произведением двух последовательных целых чисел, то есть n·(n + 1).
Теория Рамсея — раздел математики, изучающий условия, при которых в произвольно формируемых математических объектах обязан появиться некоторый порядок. Названа в честь Фрэнка Рамсея.
Арифме́тика (др.-греч. ἀριθμητική (árithmitikí) — от ἀριθμός (árithmós) «число») — раздел математики, изучающий числа, их отношения и свойства. Предметом арифметики является понятие числа (натуральные, целые, рациональные, вещественные, комплексные числа) и его свойства. В арифметике рассматриваются измерения, вычислительные операции (сложение, вычитание, умножение, деление) и приёмы вычислений. Изучением свойств отдельных целых чисел занимается высшая арифметика, или теория чисел. Теоретическая...
Множество больших тригонометрических сумм — понятие теории чисел — множество индексов, в которых преобразование Фурье характеристической функции заданного подмножества группы принимает достаточно большие значения.
Целые
числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1.
В теории чисел композицией, или разложением, натурального числа называется его представление в виде упорядоченной суммы натуральных слагаемых. Слагаемые, входящие в композицию, называют частями, а их количество — длиной композиции.
Подробнее: Композиция числа
Двенадцатикратный путь или двенадцать сценариев — это систематическая классификация 12 связанных перечислительных задач, касающихся двух конечных множеств, которые включают классические задачи подсчёта перестановок, сочетаний, мультимножеств и разбиений либо множества, либо числа. Идею классификации приписывают Джиану-Карло Роту, а название двенадцатикратный путь предложил Джоэл Спенсер. Название намекает, что используя те же подходы в 12 случаях, но с небольшими изменениями в условиях, мы получаем...
Длинная арифметика — выполняемые с помощью вычислительной машины арифметические операции (сложение, вычитание, умножение, деление, возведение в степень, элементарные функции) над числами, разрядность которых превышает длину машинного слова данной вычислительной машины. Эти операции реализуются не аппаратно, а программно, с использованием базовых аппаратных средств работы с числами меньших порядков. Частный случай — арифметика произвольной точности — относится к арифметике, в которой длина чисел ограничена...
Принцип Дирихле нередко применяется при доказательстве теорем, особенно в дискретной математике; в частности, в теории диофантовых приближений при анализе систем линейных неравенств.
Порядок Шарковского — упорядочение натуральных чисел, связанное с исследованием периодических точек динамических систем на отрезке или на вещественной прямой.
Циклическое число — целое число, циклические перестановки цифр которого являются произведениями этого числа на последовательные числа. Наиболее известный пример такого числа — 142857...