Последовательность без простых чисел

Последовательность без простых чисел — это последовательность целых чисел, не содержащая каких-либо простых чисел. Как правило, при этом предполагается, что последовательность задана той же рекуррентной формулой, что и для чисел Фибоначчи, но с другими начальными условиями, и все члены последовательности должны быть cоставными числами, не имеющими общего для всех членов делителя. Таким образом, последовательность этих чисел определяется путём выбора двух составных чисел a1 и a2, для которых наибольший общий делитель НОД(a1,a2) = 1, и таких, что для n > 2 не имеется простых чисел в последовательности, полученной из формулы

an = an − 1 + an − 2.

Источник: Википедия

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я