Кратномасштабный анализ

  • Кратномасштабный анализ (КМА) является инструментом построения базисов вейвлетов. Он был разработан в 1988/89 гг. Малла и И. Мейром. Идея кратномасштабного анализа заключается в том, что разложение сигнала производится по ортогональному базису, образованному сдвигами и кратномасштабными копиями вейвлетной функции. Свертка сигнала с вейвлетами позволяет выделить характерные особенности сигнала в области локализации этих вейвлетов.

    Понятие кратномасштабного анализа (КМА) является фундаментальным в теории вейвлетов. Для кратномасштабного анализа разработан быстрый каскадный алгоритм вычислений, подобный быстрому преобразованию Фурье.

Источник: Википедия

Связанные понятия

К вейвлет-функциям с компактным носителем относятся вейвлеты Добеши, койфлеты и симмлеты. Метод построения вейвлет-функций с компактным носителем принадлежит Ингрид Добеши. Койфлеты являются частным случаем вейвлетов Добеши с нулевыми моментами скейлинг-функции.

Подробнее: Вейвлет Койфлет
В статистике, машинном обучении и теории информации снижение размерности — это преобразование данных, состоящее в уменьшении числа переменных путём получения главных переменных. Преобразование может быть разделено на отбор признаков и выделение признаков.

Подробнее: Снижение размерности
Обобщённая фу́нкция или распределе́ние — математическое понятие, обобщающее классическое понятие функции.
Метод главных компонент (англ. principal component analysis, PCA) — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретён Карлом Пирсоном в 1901 году. Применяется во многих областях, в том числе, в эконометрике, биоинформатике, обработке изображений, для сжатия данных, в общественных науках.
Ба́зис (др.-греч. βασις «основа») — упорядоченный (конечный или бесконечный) набор векторов в векторном пространстве, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами.
В квантовой механике, преобразование Вигнера — Вейля (названо в честь Германа Вейля и Юджина Вигнера) — обратимое отображение функций в представлении фазового пространства на операторы гильбертова пространства в представлении Шредингера.
В математике, матричная функция — это функция, отображающая матрицу в другую матрицу.
Вычислительные (численные) методы — методы решения математических задач в численном видеПредставление как исходных данных в задаче, так и её решения — в виде числа или набора чисел.
Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного (или ко́мпле́ксной переме́нной; сокращенно — ТФКП) — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Схе́ма — математическая абстракция, позволяющая связать алгебраическую геометрию, коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести геометрическую интуицию и геометрические конструкции, такие как тензорные поля, расслоения и дифференциалы, в теорию колец. Исторически теория схем возникла с целью обобщения и упрощения классической алгебраической геометрии итальянской школы XIX века, занимавшейся исследованием...
Диакоптика, или метод Крона (англ. diakoptics, греческий dia-через, усиливает слово, стоящее за ним и может интерпретировано как «система» + kopto-разрыв) — один из методов расчленения при исследовании сложных систем, которые могут быть представлены в виде блок-схемы или графа с использованием граф-топологического портрета системы как нового источника информацииТермин диакоптика использовал Крон в серии статей «Diakoptics — The Piecewise Solution of Large-Scale Systems», опубликованных между 7 июня...
Ве́ктор (от лат. vector, «несущий») — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве (или на плоскости).
Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения, системы линейных уравнений, среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают...
Символическая динамика — объединяющее название класса динамических систем, для которых точками фазового пространства являются последовательности в некотором конечном алфавите «символов», а отображение заключается в сдвиге последовательности на один символ влево.
В математике, когерентные пучки — это класс пучков, тесно связанных с геометрическими свойствами пространства-носителя. В определении когерентного пучка используется пучок колец, который хранит эту геометрическую информацию.

Подробнее: Когерентный пучок
Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Ядерные методы в машинном обучении — это класс алгоритмов распознавания образов, наиболее известным представителем которого является метод опорных векторов (МОВ, англ. SVM). Общая задача распознавания образов — найти и изучить общие типы связей (например, кластеров, ранжирования, главных компонент, корреляций, классификаций) в наборах данных. Для многих алгоритмов, решающих эти задачи, данные, представленные в сыром виде, явным образом преобразуются в представление в виде вектора признаков посредством...

Подробнее: Ядерный метод
Пучок — структура, используемая для установления отношений между локальными и глобальными данными.
Неотрицательное матричное разложение (НМР), а также неотрицательное приближение матрицы, это группа алгоритмов в мультивариантном анализе и линейной алгебре, в которых матрица V разлагается на (обычно) две матрицы W и H, со свойством, что все три матрицы имеют неотрицательные элементы. Эта неотрицательность делает получившиеся матрицы более простыми для исследования. В приложениях, таких как обработка спектрограмм аудиосигнала или данных мускульной активности, неотрицательность свойственна рассматриваемым...
Производная — фундаментальное математическое понятие, используемое в различных вариациях (обобщениях) во многих разделах математики. Это базовая конструкция дифференциального исчисления, допускающая много вариантов обобщений, применяемых в математическом анализе, дифференциальной топологии и геометрии, алгебре.
Многомерный анализ (также известный как многомерное или многовариантное исчисление) является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.
Двойственность, или принцип двойственности, — принцип, по которому задачи оптимизации можно рассматривать с двух точек зрения, как прямую задачу или двойственную задачу. Решение двойственной задачи даёт нижнюю границу прямой задачи (при минимизации). Однако, в общем случае, значения целевых функций оптимальных решений прямой и двойственной задач не обязательно совпадают. Разница этих значений, если она наблюдается, называется разрывом двойственности. Для задач выпуклого программирования разрыв двойственности...
Кэлеровы дифференциалы представляют собой адаптацию дифференциальных форм для произвольных коммутативных колец или схем. Это понятие было введено Эрихом Кэлером в 1930-х.

Подробнее: Кэлеров дифференциал
Квазиньютоновские методы — методы оптимизации, основанные на накоплении информации о кривизне целевой функции по наблюдениям за изменением градиента, чем принципиально отличаются от ньютоновских методов. Класс квазиньютоновских методов исключает явное формирование матрицы Гессе, заменяя её некоторым приближением.
Ковариа́нтность и контравариа́нтность — используемые в математике (линейной алгебре, дифференциальной геометрии, тензорном анализе) и в физике понятия, характеризующие то, как тензоры (скаляры, векторы, операторы, билинейные формы и т. д.) изменяются при преобразованиях базисов в соответствующих пространствах или многообразиях. Контравариантными называют «обычные» компоненты, которые при смене базиса пространства изменяются с помощью преобразования, обратного преобразованию базиса. Ковариантными...
Ортогонализация ― процесс построения по заданному базису линейного пространства некоторого ортогонального базиса, который имеет ту же самую линейную оболочку. Ввиду удобства и важности ортогональных базисов в различных задачах, важны и процессы ортогонализации.
Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравнения — инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения. Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.
Ве́кторное (или лине́йное) простра́нство — математическая структура, которая представляет собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трехмерное евклидово пространство, векторы которого используются, к примеру, для представления...
В математике и теоретической физике функциональная производная является обобщением производной по направлению. Разница заключается в том, что для последней дифференцирование производится в направлении какого-нибудь вектора, а для первой речь идёт о функции. Оба эти понятия можно рассматривать как обобщение обычного дифференциального исчисления.

Подробнее: Функциональная производная
В прикладной статистике метод наименьших полных квадратов (МНПК, TLS — англ. Total Least Squares) — это вид регрессии с ошибками в переменных, техника моделирования данных с помощью метода наименьших квадратов, в которой принимаются во внимание ошибки как в зависимых, так и в независимых переменных. Метод является обобщением регрессии Деминга и ортогональной регрессии и может быть применён как к линейным, так и нелинейным моделям.
Полуопределённое программирование (en: Semidefinite programming, SDP) — это подраздел выпуклого программирования, которое занимается оптимизацией линейной целевой функции (целевая функция — это заданная пользователем функция, значение которой пользователь хочет минимизировать или максимизировать) на пересечении конусов положительно полуопределённых матриц с аффинным пространством.
Винеровская теория нелинейных систем — подход к решению задач анализа и синтеза нелинейных систем с постоянными параметрами, при котором в качестве математической модели нелинейной системы рассматривается функционал, который ставит в соответствие каждой функции (входному сигналу системы за рассматриваемое время) число (мгновенный выходной сигнал системы).
Метод опорных векторов (англ. SVM, support vector machine) — набор схожих алгоритмов обучения с учителем, использующихся для задач классификации и регрессионного анализа. Принадлежит семейству линейных классификаторов и может также рассматриваться как специальный случай регуляризации по Тихонову. Особым свойством метода опорных векторов является непрерывное уменьшение эмпирической ошибки классификации и увеличение зазора, поэтому метод также известен как метод классификатора с максимальным зазором...
Нейронные сети Кохонена — класс нейронных сетей, основным элементом которых является слой Кохонена. Слой Кохонена состоит из адаптивных линейных сумматоров («линейных формальных нейронов»). Как правило, выходные сигналы слоя Кохонена обрабатываются по правилу «Победитель получает всё»: наибольший сигнал превращается в единичный, остальные обращаются в ноль.
Динамическая система — множество элементов, для которого задана функциональная зависимость между временем и положением в фазовом пространстве каждого элемента системы. Данная математическая абстракция позволяет изучать и описывать эволюцию систем во времени.
Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. Именно на квантовой теории поля базируется вся физика высоких энергий, физика элементарных частиц и физика конденсированного состояния. Квантовая теория поля в виде Стандартной модели (с добавкой масс нейтрино) сейчас является единственной экспериментально...
Ориента́ция, в классическом случае — выбор одного класса систем координат, связанных между собой «положительно» в некотором определённом смысле.
Математи́ческий ана́лиз (классический математический анализ) — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
Гауссовский процесс назван так в честь Карла Фридриха Гаусса, поскольку в его основе лежит понятие гауссовского распределения (нормального распределения). Гауссовский процесс может рассматриваться как бесконечномерное обобщение многомерных нормальных распределений. Эти процессы применяются в статистическом моделировании; в частности используются свойства нормальности. Например, если случайный процесс моделируется как гауссовский, то распределения различных производных величин, такие как среднее значение...
Ковариа́нтный метод — подход в теоретической физике, разработанный Ф. И. Фёдоровым на основе линейной алгебры и прямого тензорного исчисления. Получил распространение в приложении к описанию оптических явлений и, частично, в физике элементарных частиц.
Симметрия встречается не только в геометрии, но и в других областях математики. Симметрия является видом инвариантности, свойством неизменности при некоторых преобразованиях.
Метод конечных элементов (МКЭ) — это численный метод решения дифференциальных уравнений с частными производными, а также интегральных уравнений, возникающих при решении задач прикладной физики. Метод широко используется для решения задач механики деформируемого твёрдого тела, теплообмена, гидродинамики и электродинамики.
Детерминант Слэтера или слэтеровский детерминант — антисимметричная относительно перестановки частиц волновая функция многочастичной квантовомеханической системы, построенная из одночастичных функций.
Ги́льбертово простра́нство — обобщение евклидова пространства, допускающее бесконечную размерность.
Сглаживающий сплайн (англ. smoothing spline) это метод сглаживания (аппроксимации кривой набора зашумлённых исходных данных) с использованием сплайн-функций.
Техники спектральной кластеризации используют спектр (собственные значения) матрицы сходства данных для осуществления понижения размерности перед кластеризацией в пространствах меньших размерностей. Матрица сходства подаётся в качестве входа и состоит из количественных оценок относительной схожести каждой пары точек в данных.

Подробнее: Спектральная кластеризация
Метод золотого сечения — метод поиска экстремума действительной функции одной переменной на заданном отрезке. В основе метода лежит принцип деления отрезка в пропорциях золотого сечения. Является одним из простейших вычислительных методов решения задач оптимизации. Впервые представлен Джеком Кифером в 1953 году.
Квазианалити́ческие фу́нкции в математическом анализе — класс функций, которые, нестрого говоря, можно полностью реконструировать по их значениям на небольшом участке (например, на границе области). Такое свойство значительно облегчает решение дифференциальных уравнений и исследование других задач анализа. Поскольку это свойство выполняется для аналитических функций (см. Комплексный анализ), то класс квазианалитических функций содержит класс обычных аналитических функций и может рассматриваться как...

Подробнее: Квазианалитическая функция
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
Дискретное преобразование Фурье (в англоязычной литературе DFT, Discrete Fourier Transform) — это одно из преобразований Фурье, широко применяемых в алгоритмах цифровой обработки сигналов (его модификации применяются в сжатии звука в MP3, сжатии изображений в JPEG и др.), а также в других областях, связанных с анализом частот в дискретном (к примеру, оцифрованном аналоговом) сигнале. Дискретное преобразование Фурье требует в качестве входа дискретную функцию. Такие функции часто создаются путём дискретизации...
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я