Связанные понятия
Метод простой итерации — один из простейших численных методов решения уравнений. Метод основан на принципе сжимающего отображения, который применительно к численным методам в общем виде также может называться методом простой итерации или методом последовательных приближений. В частности, для систем линейных алгебраических уравнений существует аналогичный метод итерации.
Группа Григорчука — первый пример конечнопорождённой группы промежуточного роста (то есть её рост быстрее полиномиального, но медленнее экспоненциального).
Зада́ча Не́ймана , вторая краевая задача — в дифференциальных уравнениях краевая задача с заданными граничными условиями для производной искомой функции на границе области — так называемые граничные условия второго рода. По типу области задачи Неймана можно разделить на два типа: внутренние и внешние. Названа в честь Карла Неймана.
Универсальная тригонометрическая подстановка , в англоязычной литературе называемая в честь Карла Вейерштрасса подстановкой Вейерштрасса, применяется в интегрировании для нахождения первообразных, определённых и неопределённых интегралов от рациональных функций от тригонометрических функций. Без потери общности можно считать в данном случае такие функции рациональными функциями от синуса и косинуса. Подстановка использует тангенс половинного угла.
Теоре́ма Тоне́лли — Фуби́ни в математическом анализе, теории вероятностей и смежных дисциплинах сводит вычисление двойного интеграла к повторным.
Слабая сходимость в функциональном анализе — вид сходимости в топологических векторных пространствах.
В статистике метод оценки с помощью апостериорного максимума (MAP) тесно связан с методом максимального правдоподобия (ML), но дополнительно при оптимизации использует априорное распределение величины, которую оценивает.
Подробнее: Оценка апостериорного максимума
Лине́йная интерполя́ция — интерполяция алгебраическим двучленом P1(x) = ax + b функции f, заданной в двух точках x0 и x1 отрезка . В случае, если заданы значения в нескольких точках, функция заменяется кусочно-линейной функцией.
Единичный отрезок — величина, принимаемая за единицу при геометрических построениях. При изображении декартовой системы координат, единичный отрезок обычно отмечается на каждой из осей.
Как и для криволинейных интегралов, существуют два рода поверхностных интегралов.
Подробнее: Поверхностные интегралы
Абсолютная непрерывность — в математическом анализе, свойство функций и мер, состоящее, неформально говоря, в выполнении теоремы Ньютона — Лейбница о связи между интегрированием и дифференцированием.
Модели дискретного выбора — экономические (эконометрические) модели, позволяющие описывать, объяснять и прогнозировать выбор между, двумя или более альтернативами (то есть когда множество альтернатив не более чем счетно). Модели дискретного выбора позволяют на основе некоторых характеристик (атрибутов) экономического субъекта или ситуации оценить вероятность выбора той или иной альтернативы.
Подробнее: Дискретный выбор
Эрмитова форма — естественный аналог понятия симметричной билинейной формы для комплексных векторных пространств. Для эрмитовых форм верны аналоги многих свойств симметрических форм: приведение к каноническому виду, понятие положительной определенности и критерий Сильвестра.
В общей алгебре,
поле k называется совершенным если выполняется одно из следующих эквивалентных условий...
Нормальная форма Чибрарио — нормальная форма дифференциального уравнения, не разрешённого относительно производной, в окрестности простейшей особой точки. Название предложено В. И. Арнольдом в честь итальянского математика Марии Чибрарио, установившей эту нормальную форму для одного класса уравнений.
Количество степеней свободы — это количество значений в итоговом вычислении статистики, способных варьироваться. Иными словами, количество степеней свободы показывает размерность вектора из случайных величин, количество «свободных» величин, необходимых для того, чтобы полностью определить вектор.
Эффекти́вная оце́нка в математической статистике — несмещенная статистическая оценка, дисперсия которой совпадает с нижней гранью в неравенстве Крамера-Рао.
В теории категорий, представимый функтор — функтор специального типа из произвольной категории в категорию множеств. В некотором смысле, такие функторы задают представление категории в терминах множеств и функций.
Дифференциа́л (от лат. differentia — разность, различие) в математике — линейная часть приращения дифференцируемой функции или отображения.
Эллиптические уравнения — класс дифференциальных уравнений в частных производных, описывающих стационарные процессы.
Подробнее: Эллиптическое уравнение
Преобразование в математике — отображение (функция) множества в себя. Иногда (в особенности в математическом анализе и геометрии) преобразованиями называют отображения, переводящие некоторое множество в другое множество.
Зада́ча Гурса ́ — это разновидность краевой задачи для гиперболических уравнений и систем 2-го порядка с двумя независимыми переменными по данным на двух выходящих из одной точки характеристических кривых.
В геометрии
домино замощение области в евклидовой плоскости — это мозаика области плитками домино, образованными объединением двух единичных квадратов, соединённых по ребру. Эквивалентно это паросочетание в графе решётки, образованное помещением вершины в центр каждого квадрата области и соединением двух вершин, если два соответствующих квадрата смежны.
Степень трансцендентности расширения поля в общей алгебре — это величина, которая даёт грубую оценку «масштаба» расширения. Другими словами, чем больше степень трансцендентности, тем больше расширенное поле содержит трансцендентных (то есть, неалгебраических по отношению к исходному полю) элементов.
Теорема о монотонной сходимости (теорема Беппо́ Ле́ви) — это теорема из теории интегрирования Лебега, имеющая фундаментальное значение для функционального анализа и теории вероятностей, где служит инструментом для доказательства многих положений. Даёт одно из условий при которых можно переходить к пределу под знаком интеграла Лебега, теорема позволяет доказать существование суммируемого предела у некоторых ограниченных функциональных последовательностей.
Закон повторного логарифма — предельный закон теории вероятностей. Теорема определяет порядок роста делителя последовательности сумм случайных величин, при котором эта последовательность не сходится к нулю, но остается почти всюду в конечных пределах.
В математике константой
Чигера (также числом Чигера или изопериметрическим числом) графа называется числовая характеристика графа, отражающая, есть ли у графа «узкое место» или нет. Константа Чигера как способ измерения наличия «узкого места» представляет интерес во многих областях, например, для создания сильно связанных компьютерных сетей, для тасования карт и в топологии малых размерностей (в частности, при изучении гиперболических 3-мерных многообразий). Названа в честь математика Джефа Чигера...
Перебор делителей (пробное деление) — алгоритм факторизации или тестирования простоты числа путём полного перебора всех возможных потенциальных делителей.
Дискре́тное простра́нство в общей топологии и смежных областях математики — это пространство, все точки которого изолированы друг от друга в некотором смысле.
Направленное множество в математике — непустое множество A с заданным на нем рефлексивным транзитивным отношением ≤ (то есть предпорядком), обладающее дополнительным свойством: у любой пары элементов из A есть верхняя грань в A.
В коммутативной алгебре, дробный идеал — это обобщение понятия идеала целостного кольца, особенно полезное при изучении дедекиндовых колец. Условно говоря, дробные идеалы — это идеалы со знаменателями. В случаях, когда одновременно обсуждаются дробные и обычные идеалы, последние называют целыми идеалами.
Лемма о вложенных отрезках , или принцип вложенных отрезков Коши — Кантора, или принцип непрерывности Кантора — фундаментальное утверждение в математическом анализе, связанное с полнотой поля вещественных чисел.
Фо́рмула Кирхго́фа — аналитическое выражение для решения гиперболического уравнения в частных производных (т. н. «волнового уравнения») во всём трёхмерном пространстве. Методом спуска (то есть уменьшением размерности) из него можно получить решения двумерного (Формула Пуассона) и одномерного (Формула Д’Аламбера) уравнения.
Теорема существования — утверждение, которое устанавливает, при каких условиях существует решение математической задачи или математический объект, например производная, неопределенный интеграл, определенный интеграл, решение уравнения и т. д. При доказательстве теорем существования используются сведения из теории множеств. Теоремы существования играют очень важную роль в различных приложениях математики, например при математическом моделировании различных явлений и процессов. Математическая модель...
Коэффицие́нт асимметри́и в теории вероятностей — величина, характеризующая асимметрию распределения данной случайной величины.
В теории представлений групп Ли и алгебр Ли, фундаментальное представление — это неприводимое конечномерное представление полупростой группы Ли или алгебры Ли, старший вес которого является фундаментальным весом. Например, определяющий модуль классической группы Ли является фундаментальным представлением. Любое конечномерное неприводимое представление полупростой группы Ли или алгебры Ли полностью определяется своим старшим весом (теорема Картана) и может быть построено из фундаментальных представлений...
Подробнее: Фундаментальное представление
Равноме́рная непреры́вность в математическом и функциональном анализе — это свойство функции быть одинаково непрерывной во всех точках области определения.
Теорема о четырёх вершинах утверждает, что функция кривизны простой замкнутой гладкой плоской кривой имеет по меньшей мере четыре локальных экстремума (в частности, по меньшей мере два локальных максимума и по меньшей мере два локальных минимума). Название теоремы отражает соглашение называть экстремальные точки функции кривизны вершинами.
Сигнату́ра — числовая характеристика квадратичной формы или псевдоевклидова пространства, в котором скалярное произведение задано с помощью соответствующей квадратичной формы.
Максимальным идеалом коммутативного кольца называется всякий собственный идеал кольца, не содержащийся ни в каком другом собственном идеале.
Подробнее: Максимальный идеал
Вну́тренность множества в общей топологии — это совокупность всех внутренних точек. Обычно обозначается Int, вероятно, от англ. Interior. Иногда внутренность множества называют ядром.