Связанные понятия
В проективной геометрии
конфигурация на плоскости состоит из конечного множества точек и конечной конфигурации прямых, таких, что каждая точка инцидентна одному и тому же числу прямых и каждая прямая инцидентна одному и тому же числу точек.
Конфигурация прямых (или разбиение плоскости прямыми) — это разбиение плоскости, образованное набором прямых.
Схе́ма — математическая абстракция, позволяющая связать алгебраическую геометрию, коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести геометрическую интуицию и геометрические конструкции, такие как тензорные поля, расслоения и дифференциалы, в теорию колец. Исторически теория схем возникла с целью обобщения и упрощения классической алгебраической геометрии итальянской школы XIX века, занимавшейся исследованием...
Произведение топологических пространств — это топологическое пространство, полученное, как множество, декартовым произведением исходных топологических пространств, и снабжённое естественной топологией, называемой топологией произведения или тихоновской топологией. Слово «естественная» здесь употребляется в смысле теории категорий и означает, что эта топология удовлетворяет некоторому универсальному свойству.
Алгебраическая комбинаторика — это область математики, использующая методы общей алгебры, в особенности теории групп и теории представлений, в различных комбинаторных контекстах и, наоборот, применяющая комбинаторные техники к задачам в алгебре.
Упоминания в литературе
На наш взгляд, фракталы ментального и социокультурного характера более уместно было бы называть концептуальными, поскольку подобие во многих из них выражается не на уровне гомогенных конфигураций и рекурсивных паттернов, тем или иным образом связанных с культурой, а на уровне идей и концептов, общих для некоторой социокультурной, философской и т. п. системы и ее составляющих: символы, социальные и культурные элементы и пр. Ведь, скажем, некоторые фракталы, которые можно обнаружить в социокультурном пространстве и, соответственно, назвать культурными, как, например, элементы архитектурных
комплексов, часто оказываются чисто геометрическими. Таким геометрическим фракталом является знаменитый замок Castel del Monte (1250 г.) на юге Италии, имеющий в плане несколько уровней восьмиугольных паттернов. При том, что он, безусловно, представляет собой культурный артефакт, памятник истории и культуры, его фрактальные структуры описываются исключительно в терминах и алгоритмах геометрической фрактальности. И за этими геометрическими фрактальными паттернами не скрывается никакое специфическое культурное (символическое) содержание.
Дополнение 1. Пространства разных объектов могут накладываться друг на друга в самых разных формах, влияя на конфигурации и характеристики пространства каждого из них, а также формируя
интегральные пространства групп объектов с единой конфигурацией и характеристиками (на основе принципа системности, с наложением на основе законов интерференции). Между различными пространствами (пространствами разных объектов) существуют переходы.
В данном примере будет использован второй способ – трудоемкий, но часто применяемый в ArCon. Речь идет
о построении зданий произвольной конфигурации с использованием описанных выше команд для построения стен.
Очевидно, что с изменением цели и условий деятельности человека рисунок окуломоторной активности меняется. При этом меняется не только содержание значимых элементов (где и что воспринимается), но и требования к их восприятию (как воспринимать, насколько точно или дифференцированно). С последним связано понятие функционального поля зрения, величина которого в ходе перцептивного процесса перманентно меняется. В силу многоканальности зрительной системы одной и той же направленности взора может соответствовать и элемент среды, на который он непосредственно ориентирован, и констелляция элементов, входящих в его окружение. Оценка предмета восприятия на основе местоположения точки фиксации перестает быть однозначной и требует использования дополнительных критериев. Вектор направленности взора может входить, а может не входить в границы функционального поля зрения либо находиться на его периферии. В любом случае образуется относительно самостоятельная область направленности глаз, обеспечивающая необходимое восприятие значимых элементов среды, – оперативная зона фиксаций, которая в зависимости от требований задачи легко меняет свою локализацию, форму и величину. Оперативная зона фиксаций комплексных объектов имеет неоднородное строение и включает 1) ядро, или «центр тяжести» – наиболее часто фиксируемые области предмета; 2) область менее интенсивных фоновых фиксаций, ограниченную поверхностью объекта; и 3) область разреженных фиксаций вне поверхности объекта (периферию). Расположение «центра тяжести» часто не совпадает ни с геометрическим центром поверхности объекта, ни с
геометрическими центрами его компонентов. Возможно наличие нескольких «центров тяжести» одновременно. Фиксационный «центр тяжести» характеризуется следующими параметрами: локализацией, фронтом (формой) и интенсивностью. Его профиль, наряду с содержанием зрительной задачи, зависит от конфигурации поверхности объекта, его локализации в поле зрения и социокультурных навыков наблюдателя.
Инерционное доминирование правополушарных когнитивных функций свой эволюционный потенциал исчерпало в мифоритуальных системных основаниях культуры. Нарастающее доминирование левополушарных когнитивных технологий более не могло осуществляться в оболочке
мифоритуальных форм и ментальных конфигураций – требовался переход к новому типу смыслообразования. К этому времени культура была уже далеко не точечным, а развитым системным образованием, включавшим множество подсистем и специализированных структур, а также многочисленные и высокоспециализированные социальные группы. Нуждалась она не только в выработке принципиально новых механизмов координации функций подсистем, но и в их вторичном упрощении – сбросе «лишнего» материала и уплотнении эволюционного опыта, – для чего требовались принципиально новые способы его кодирования и трансляции. Уход мифоритуальной культуры в дурную бесконечность горизонтального эволюционирования, дробление и самоумножение форм и феноменов привели к перенасыщению культурного пространства дискретными и хаотизованными смысловыми структурами, что с точки зрения человеческой ментальности приняло вид распада традиционного мифоритуального космоса.
Связанные понятия (продолжение)
Особенность , или сингулярность в математике — это точка, в которой математический объект (обычно функция) не определён или имеет нерегулярное поведение (например, точка, в которой функция имеет разрыв или недифференцируема).
Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических...
Ве́ктор (от лат. vector, «несущий») — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве (или на плоскости).
В математике, когерентные пучки — это класс пучков, тесно связанных с геометрическими свойствами пространства-носителя. В определении когерентного пучка используется пучок колец, который хранит эту геометрическую информацию.
Подробнее: Когерентный пучок
Метризуемое пространство — топологическое пространство, гомеоморфное некоторому метрическому пространству. Иначе говоря, пространство, топология которого порождается некоторой метрикой.
Ориента́ция , в классическом случае — выбор одного класса систем координат, связанных между собой «положительно» в некотором определённом смысле.
В математике монодро́ми́ей называется явление, состоящее в преобразовании некоторого объекта при обнесении его вдоль нетривиального замкнутого пути.
Подробнее: Монодромия
Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения, системы линейных уравнений, среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают...
Алгебраи́ческая тополо́гия (устаревшее название: комбинаторная топология) — раздел топологии, изучающий топологические пространства путём сопоставления им алгебраических объектов (групп, колец и т. д.), а также поведение этих объектов под действием различных топологических операций.
Общая топология , или теоретико-множественная топология, — раздел топологии, в котором изучаются понятия «непрерывности» и «предела» в наиболее общем смысле.
Геометрия Галуа (названа именем французского математика 19-го века Эвариста Галуа) — это раздел конечной геометрии, рассматривающий алгебраическую и аналитическую геометрию над конечными полями (или полями Галуа). В более узком смысле геометрию Галуа можно определить как проективное пространство над конечным полем.
Гомологическая зеркальная симметрия — математическая гипотеза, высказанная Максимом Концевичем. Она возникла как попытка выявить математическую природу явления, впервые замеченного физиками в теории струн.
Плоскость Фано — конечная проективная плоскость порядка 2, имеющая наименьшее возможное число точек и прямых (7 точек и 7 прямых), с тремя точками на каждой прямой и с тремя прямыми, проходящими через каждую точку. Названа по имени итальянского математика Джино Фано.
Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравнения — инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения. Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.
В математике конечное правило подразделения — это рекурсивный способ деления многоугольника и других двумерных фигур на всё меньшие и меньшие части. Правила подразделения в этом смысле является обобщением фракталов. Вместо повторения одного и того же узора снова и снова здесь имеются небольшие изменения на каждом шаге, что позволяет получить более богатые структуры, сохраняя при этом поддержку элегантного стиля фракталов . Правила подразделения используются в архитектуре, биологии и информатике...
Алгебраическая поверхность — это алгебраическое многообразие размерности два. В случае геометрии над полем комплексных чисел алгебраическая поверхность имеет комплексную размерность два (как комплексное многообразие, если оно неособо), а потому имеет размерность четыре как гладкое многообразие.
Фуксова модель — это представление гиперболической римановой поверхности R как факторповерхности верхней полуплоскости H по фуксовой группе. Любая гиперболическая риманова поверхность позволяет такое представление. Концепция названа именем Лазаря Фукса.
Теория комбинаторных схем — это часть комбинаторики (раздела математики), рассматривающая существование, построение и свойства семейств конечных множеств, структура которых удовлетворяет обобщённым концепциям равновесия и/или симметрии. Эти концепции не определены точно, так что объекты широкого диапазона могут пониматься как комбинаторные схемы. Так, в одном случае комбинаторные схемы могут представлять собой пересечения множеств чисел, как в блок-схемах, а в другом случае могут отражать расположение...
Подробнее: Комбинаторная схема
Тополо́гия Зари́сского , или топология Зариского, — специальная топология, отражающая алгебраическую природу алгебраических многообразий. Названа в честь Оскара Зарисского и, начиная с 1950-х годов, занимает важное место в алгебраической геометрии.
Симметрия встречается не только в геометрии, но и в других областях математики. Симметрия является видом инвариантности, свойством неизменности при некоторых преобразованиях.
Алгебраическая геометрия — раздел математики, который объединяет алгебру и геометрию. Главным предметом изучения классической алгебраической геометрии, а также в широком смысле и современной алгебраической геометрии, являются множества решений систем алгебраических уравнений. Современная алгебраическая геометрия во многом основана на методах общей алгебры (особенно коммутативной) для решения задач, возникающих в геометрии.
Диаграмма Вороного конечного множества точек S на плоскости представляет такое разбиение плоскости, при котором каждая область этого разбиения образует множество точек, более близких к одному из элементов множества S, чем к любому другому элементу множества.
Фальшивая проективная плоскость (или поверхность Мамфорда) — это одна из 50 комплексных алгебраических поверхностей, которые имеют те же числа Бетти, что и у проективной плоскости, но не гомеоморфны ей.
Метод опорных векторов (англ. SVM, support vector machine) — набор схожих алгоритмов обучения с учителем, использующихся для задач классификации и регрессионного анализа. Принадлежит семейству линейных классификаторов и может также рассматриваться как специальный случай регуляризации по Тихонову. Особым свойством метода опорных векторов является непрерывное уменьшение эмпирической ошибки классификации и увеличение зазора, поэтому метод также известен как метод классификатора с максимальным зазором...
А́лгебра (от араб. الْجَبْر, «аль-джабр» — восполнение) — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики. Слово «алгебра» также употребляется в общей алгебре в названиях различных алгебраических систем. В более широком смысле под алгеброй понимают раздел математики, посвящённый изучению операций над элементами множеств произвольной природы, обобщающий обычные операции сложения и умножения чисел.
Теорема об упаковке кругов (известная также как теорема Кёбе — Андреева — Тёрстона) описывает возможные варианты касания окружностей, не имеющих общих внутренних точек. Граф пересечений (иногда называемый графом касаний) упаковки кругов — это граф, вершины которого соответствуют кругам, а рёбра — точкам касания. Если упаковка кругов осуществляется на плоскости (или, что эквивалентно, на сфере), то их граф пересечений называется графом монет. Графы монет всегда связны, просты и планарны. Теорема упаковки...
Ко́мпле́ксный ана́лиз , тео́рия фу́нкций ко́мпле́ксного переме́нного (или ко́мпле́ксной переме́нной; сокращенно — ТФКП) — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Тополо́гия (от др.-греч. τόπος — место и λόγος — слово, учение) — раздел математики, изучающий...
Абстрактный клеточный компле́кс — множество с топологией Александрова, в котором неотрицательное целое число, называемое размерностью, присвоено каждой точке. Понятие используется в цифровой топологии для задач анализа двумерных и трёхмерных цифровых изображений. Комплекс называется «абстрактным» потому, что его точки, называемые «клетками», не являются подмножествами хаусдорфова пространства, как это требуется для клеточных комплексов, применяемых в алгебраической топологии и теории гомотопий.
Самоподобный объект — объект, в точности или приближённо совпадающий с частью себя самого (то есть целое имеет ту же форму, что и одна или более частей).
Подробнее: Самоподобие
Бордизм , также бордантность — термин топологии, употребляющийся самостоятельно или в составе стандартных...
Конечная геометрия — это любая геометрическая система, имеющая конечное количество точек. Например, евклидова геометрия не является конечной, так как евклидова прямая содержит неограниченное число точек, а точнее говоря, содержит ровно столько точек, сколько существует вещественных чисел. Конечная геометрия может иметь любое конечное число измерений.
Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Ве́кторное (или лине́йное) простра́нство — математическая структура, которая представляет собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трехмерное евклидово пространство, векторы которого используются, к примеру, для представления...
Зеркальная симметрия была изначально обнаружена физиками. Математики заинтересовались этим явлением около 1990 года, когда Филип Канделас, Ксения де ла Осса, Пол Грин и Линда Паркс показали, что зеркальную симметрию можно использовать в качестве инструмента в исчислительной геометрии, разделе математики, занимающемся подсчётом количества ответов на те или иные геометрические вопросы. Канделас и соавторы показали, что зеркальная симметрия может быть использована для подсчёта числа рациональных кривых...
Универсальная алгебра — раздел математики, изучающий общие свойства алгебраических систем, отыскивая общие черты между такими алгебраическими конструкциями, как группы, кольца, модули, решётки, вводя присущие им всем понятия и общие для всех них утверждения и результаты. Является разделом, занимающим промежуточное положение между математической логикой и общей алгеброй, как реализующий аппарат математической логики в применении к общеалгебраическим структурам.
Пучок — структура, используемая для установления отношений между локальными и глобальными данными.
Многообразие Шимуры (иногда многообразие Симуры) — аналог модулярной кривой в более высоких размерностях, который возникает как фактор эрмитова симметрического пространства по конгруэнтной подгруппе редуктивной алгебраической группе, определённой над Q. Термин «многообразие Шимуры» относится к высоким размерностям, в случае одномерных многообразий говорят о кривых Шимуры. Модулярные поверхности Гильберта и модулярные многообразия Зигеля находятся среди лучших известных классов многообразий Шимуры...
Упоминания в литературе (продолжение)
Создание форм, соответствующих изменяющимся границам и содержательности образно-географических исследований, связано с поисками новых средств репрезентации и интерпретации географических образов[223]. Смысл подобных поисков заключается в высокой вариативности самих форм, позволяющих одновременно сосуществовать в одном и том же пространстве различно репрезентированным и интепретированным географическим образам. Основные направления поисков – использование новейших картографических методов и
проекций для отображения динамики пространства географических образов[224], разработка новых средств визуализации и вербализации географических образов на базе Интернет[225], переосмысление понятия виртуального пространства (кибер-пространства)[226], представление географических образов как нечетких множеств с изменяющимися смысловыми конфигурациями.
• для объединения «разновозрастных структур» (как бы структур прошлого, структур настоящего и структур будущего) в единую устойчиво эволюционирующую структуру необходимо нарушение симметрии; путь к возрастающей сложности мира – это путь увеличения моментов нарушения
симметрии в конфигурации сложных структур;
Качество 6 Большого Аркана на молекулярном
уровне соответствует совокупности волновых свойств электронного облака. В биохимии следует рассматривать совокупность волновых свойств электронного облака и их конфигурацию в организме.
Ближняя зона является «квантом пространства»,
который составит основу пространственных конфигураций, доступных человеку на последующих этапах развития. Строго говоря, применять термин «пространство» к ближней зоне не корректно. Ближняя зона – это, прежде всего, место. Чувство пространства начинает формироваться при освоении человеком больших расстояний.
При трехмерном моделировании 3D-сцена также строится из отдельных объектов, которые система предлагает пользователю на выбор. К примеру, если определенная программа предназначается для моделирования дизайна жилых комнат или коммерческих помещений, то база данных такой программы может быть представлена набором различной мягкой или офисной мебели, шкафов, столов и пр. Каждый трехмерный объект интерьера также владеет специфическими свойствами, позволяющими модифицировать его в
определенных пределах (изменять цвет, конфигурацию, подбирать материал и другие свойства).
Нужно сказать, что на сегодняшний день эта
конфигурация является минимальной для работы с редакторами трехмерной графики, в частности с 3ds Max 2009. Оптимальным же будет компьютер с процессором Core 2 Duo E6600 с тактовой частотой 2,24 ГГц и объемом оперативной памяти 1024 Мбайт. Правда, стоит заметить, что расчет глобальной освещенности по алгоритму Radiosity (Перенос излучения) или визуализация перенасыщенных объектами сцен с применением встроенных или сторонних модулей (Mental Ray, Final Render, Brazil и т. п) могут с легкостью загрузить вычислениями вышеописанную конфигурацию на 6–8 часов.
Во-вторых, живые системы коренным образом отличаются от абсолютно твердых тел. Это отличие состоит в возможности существенного изменения не только формы и размеров, но и относительного расположения составных частей системы. Для человека, в частности, эти изменения характеризуются таким понятием как поза. То есть с точки зрения механики, тело
человека является телом переменной конфигурации. Иногда и отдельные части живой системы (например, позвоночный столб, грудная клетка человека) также существенно деформируются.
Примеры алгоритмов действий при изучении учебных элементов УЭ-8 «Электронная структура атомов», УЭ-12 «Теория молекулярных орбиталей», УЭ-14 «Пространственная конфигурация молекул», УЭ-31 «Гидролиз», УЭ-32 «Окислительно-восстановительные реакции», а также при выполнении лабораторных работ, входящих в состав УЭ-15 «Твердое, жидкое, газовое состояние», УЭ-17 «Способы выражения содержания растворенного вещества в растворе», УЭ-18 «Тепловой эффект реакции. Энтальпия», имеются в учебно-методической литературе, разработанной в процессе выполнения данной исследовательской работы [30, 33, 53]. Использование алгоритмов действий, создающих ориентировочную основу действий, служит эффективным методическим приемом при адаптационном обучении химии студентов первого курса.
♦ IDEF14 (Network Design) – стандарт проектирования компьютерных сетей, основанный на анализе требований, специфических сетевых
компонентов, существующих конфигураций сетей. Также он обеспечивает поддержку решений, связанных с рациональным управлением материальными ресурсами, что позволяет достичь существенной экономии.