Понятия со словом «считаемый»
Связанные понятия
Противоположные суждения — так называются два суждения, имеющие одно и то же подлежащее и сказуемое, но различающиеся между собой по количеству или качеству. Если назвать A — общеутвердительные суждения; E — общеотрицательные; I — частноутвердительные; O — частноотрицательные, то можно составить квадрат, на котором все отношения противоположности будут выяснены графически.
Посылка — это утверждение, предназначенное для обоснования или объяснения некоторого аргумента. В логике аргумент — это множество предложений (или «суждений») одни из которых являются посылками, а другие утвердительные предложения (или суждения) — логическими выводами.
Демпстера-Шафера теория — математическая теория очевидностей (свидетельств) (), основанная на функции доверия (belief functions) и функции правдоподобия (plausible reasoning), которые используются, чтобы скомбинировать отдельные части информации (свидетельства) для вычисления вероятности события. Теория была развита Артуром П. Демпстером и Гленном Шафером.
Класс — термин, употребляемый в теории множеств для обозначения произвольных совокупностей множеств, обладающих каким-либо определенным свойством или признаком. Более строгое определение класса зависит от выбора исходной системы аксиом. В системе аксиом Цермело — Френкеля определение класса является неформальным, тогда как другие системы, например, система аксиом фон Неймана — Бернайса — Гёделя, аксиоматизируют определение «собственного класса» как некоторого семейства, которое не может быть элементом...
Праймориал (англ. Primorial, иногда именуется также «примориал») — в теории чисел функция над рядом натуральных чисел, схожая с функцией факториала, с разницей в том, что праймориал является последовательным произведением простых чисел, меньших или равных данному, в то время как факториал является последовательным произведением всех натуральных чисел, меньших или равных данному.
Формальное дифференцирование — операция над элементами кольца многочленов или кольцом формальных степенных рядов, повторяющая форму производных из математического анализа. Алгебраическое преимущество формального дифференцирования состоит в том, что оно не опирается на понятие предела, которое в общем случае невозможно определить для кольца. Многие свойства производной верны для формального дифференцирования, но некоторые, особенно касающиеся утверждений, содержащих числа, не верны. В основном формальное...
Знаки «плюс» и «минус» (+ и −) — математические символы, используемые для обозначения операций сложения и вычитания, а также положительных и отрицательных величин. Кроме того, они используются и для обозначения других понятий. Латинские термины plus и minus означают «более» и «менее» соответственно.
Доказательство — это процесс (метод) установления истины, логическая операция обоснования истинности утверждения с помощью фактов и связанных с ними суждений. С помощью совокупности логических приёмов истинность какого-либо суждения обосновывается исходя из других истинных суждений.
Соизмери́мые величи́ны — величины, для которых соответственно существует общая мера. Общей мерой величин называют величину, которая целое число раз содержится в каждой из них. Если такой меры, которая укладывается целое число раз в каждую величину, не существует, то такие величины называют несоизмери́мыми. Примером несоизмеримых величин могут служить диагональ квадрата и его сторона.
Аксиома детерминированности — аксиома теории множеств, обычно обозначаемая AD. Эту аксиому предложили в 1962 году польские математики Ян Мычельский и Гуго Штейнгауз в качестве замены для аксиомы выбора (введённой в 1904 году, обозначается AC). Причиной поиска альтернативы аксиоме выбора стали необычные следствия из этой аксиомы, которые вызывали и продолжают вызывать критику со стороны части математиков. Например, в случае применения аксиомы выбора возникают парадоксальные конструкции вроде «парадокса...
Вполне упорядоченное множество — линейно упорядоченное множество M такое, что в любом его непустом подмножестве есть минимальный элемент, другими словами, это фундированное множество с линейным порядком.
Пресуппози́ция (от лат. prae — впереди, перед и suppositio — подкладывание, заклад) (также презу́мпция) в лингвистической семантике — необходимый семантический компонент, обеспечивающий наличие смысла в утверждении.
Инвариа́нт или инвариа́нтность — термин, обозначающий нечто неизменяемое. Конкретное значение термина зависит от той области, где он используется...
Эквивале́нтность катего́рий в теории категорий — отношение между категориями, показывающее, что две категории «по существу одинаковы». Установление эквивалентности свидетельствует о глубокой связи соответствующих математических концепций и позволяет «переносить» теоремы с одних структур на другие.
Равномощность — отношение эквивалентности на множествах ключевое в определении мощности множества.
Сильный (также называемый позитивным или жёстким) и слабый (также называемый негативным или мягким) атеизм — формы атеизма, утверждающие, что не существует каких-либо божеств в случае сильного атеизма или представляет собой неверие в существование каких-либо божеств, при этом явно не утверждая, что их нет, в случае слабого атеизма.
Единица в теории колец — двусторонний нейтральный элемент операции умножения. Кольцо, содержащее единицу, называется кольцом с единицей. Обозначается единица, как правило, цифрой «1» (что отражает таковые свойства одноимённого числа) или иногда (например, в матричной алгебре), латинской буквой I или E.
Саморефере́нция (самоотносимость) — явление, которое возникает в системах высказываний в тех случаях, когда некое понятие ссылается само на себя. Иначе говоря, если какое-либо выражение является одновременно самой функцией и аргументом этой функции.
Конкретная категория в математике — категория, снабжённая строгим функтором в категорию множеств. Благодаря этому функтору можно оперировать с объектами такой категории образом, сходным с работой с множествами с дополнительной структурой, а морфизмы представлять как функции, сохраняющие дополнительную структуру. Многие категории имеют очевидную интерпретацию конкретных категорий, например, категория групп, категория топологических пространств и собственно категория множеств. С другой стороны, существуют...
Логический квадрат — это схематичный способ классификации суждений. Он имеет форму геометрического квадрата, чья система классификации включает все атрибутивные (единичные, общие и частные) суждения. Причем общие и единичные суждения рассматриваются как тождественные объему субъекта.
В математике централизатор подмножества S группы G — это множество элементов G, которые коммутируют с каждым элементом S, а нормализатор S — это множество элементов G, которые коммутируют с S «в целом». Централизатор и нормализатор S являются подгруппами G и могут пролить свет на структуру G.
Дедеки́ндово сече́ние (или у́зкая щель) — один из способов построения вещественных чисел из рациональных.
Обра́тный элеме́нт — термин в общей алгебре, обобщающий понятия обратного числа (для умножения) и противоположного числа (для сложения).
Росток объекта на топологическом пространстве выражает локальные свойства объекта. В некотором смысле можно сказать, что это новый объект, который перенимает лишь локальные свойства объекта его породившего (чаще всего в роли таких объектов выступают отображения). Очевидно, что различные функции могут задавать один и тот же росток. В таком случае все локальные свойства (непрерывность, гладкость и т. п.) у таких функций совпадают и достаточно рассматривать свойства не самих функций, а лишь их ростков...
Совершенное множество — замкнутое множество, не имеющее изолированных точек, то есть совпадающее с множеством всех своих предельных точек.
Категория называется полной в малом, если в ней любая малая диаграмма имеет предел. Двойственное понятие — кополная в малом категория, то есть та, в которой любая малая диаграмма имеет копредел. Аналогично определяется конечная полнота и вообще α-полнота для любого регулярного кардинала α. Из них всех наиболее употребимой является полнота в малом, поэтому категории, полные в малом, называют просто полными. Существование пределов вообще всех (не обязательно малых) диаграмм оказывается слишком сильным...
Магма (группоид) в общей алгебре — алгебра, состоящая из множества М с одной бинарной операцией M × M → M. Помимо требования замкнутости множества относительно заданной на нём операции, других требований к операции и множеству не предъявляется.
Преде́льная то́чка множества в общей топологии — это такая точка, любая проколотая окрестность которой пересекается с этим множеством.
Копроизведение (категорная сумма) семейства объектов — обобщение в теории категорий понятий дизъюнктного объединения множеств и топологических пространств и прямой суммы модулей или векторных пространств. Копроизведение семейства объектов — это «наиболее общий» объект, в который существует морфизм из каждого объекта семейства. Копроизведение объектов двойственно их произведению, то есть определение копроизведения можно получить из определения произведения обращением всех стрелок. Тем не менее, во...
Данная статья — часть обзора История математики. Современная математика изучает абстрактные структуры совершенно различной природы (множества, высказывания, логические языки, функции), но её основным объектом изучения изначально были понятия натурального числа и геометрической фигуры, возникшие из практической деятельности человека.
Подробнее: Возникновение математики
Полный квадрат или квадратное число — число, являющееся квадратом некоторого целого числа. Иными словами, квадратом является целое число, квадратный корень которого тоже целый.
Одночлен (также моном) — простое математическое выражение, прежде всего рассматриваемое и используемое в элементарной алгебре, а именно, произведение, состоящее из числового множителя и одной или нескольких переменных, взятых каждая в неотрицательной целой степени .
Усло́вное распределе́ние в теории вероятностей — это распределение случайной величины при условии, что другая случайная величина принимает определённое значение.
Теоремы об изоморфизме в алгебре — ряд теорем, связывающих понятия фактора, гомоморфизма и вложенного объекта. Утверждением теорем является изоморфизм некоторой пары групп, колец, модулей, линейных пространств, алгебр Ли или прочих алгебраических структур (в зависимости от области применения). Обычно насчитывают три теоремы об изоморфизме, называемые Первой (также основная теорема о гомоморфизме), Второй и Третьей. Хотя подобные теоремы достаточно легко следуют из определения фактора и честь их открытия...
В настоящее время отсутствует единое определение точно решаемой задачи для всех разделов математики. Это обусловлено особенностями самих задач и методов поиска их решения. Вместе с тем базовые теоремы, определяющие наличие и единственность решений, строятся на общих принципах, что будет показано ниже.
Подробнее: Точнорешаемая задача
Метод неопределённых коэффициентов ― метод, используемый в математике для нахождения искомой функции в виде точной или приближённой линейной комбинации конечного или бесконечного набора базовых функций.
Интенсиона́л (от лат. intentio — интенсивность, напряжение, усилие) — термин семантики, обозначающий содержание понятия, то есть совокупность мыслимых признаков обозначаемого понятием предмета или явления. Например, в интенсионал понятия «Сократ» входят все свойства, которыми обладает Сократ: человек, мужчина, грек, философ и т.д. Интенсионал противопоставляется экстенсионалу, то есть множеству объектов, способных именоваться данной языковой единицей.
Частичный предел некоторой последовательности — это предел одной из её подпоследовательностей, если только он существует. Для сходящихся числовых последовательностей частичный предел совпадает с обычным пределом в силу единственности последнего, однако в самом общем случае у произвольной последовательности может быть от нуля до бесконечного числа различных частичных пределов. При этом, если обычный предел характеризует точку, к которой элементы последовательности приближаются с ростом номера, то...
Дробная производная (или производная дробного порядка) является обобщением математического понятия производной. Существует несколько разных способов обобщить это понятие, но все они совпадают с понятием обычной производной в случае натурального порядка. Когда рассматриваются не только дробные, но и отрицательные порядки производной, к такой производной обычно применяется термин дифферинтеграл.
Группа классов идеалов дедекиндова кольца — это, грубо говоря, группа, позволяющая сказать, насколько сильно в данном кольце нарушается свойство факториальности. Эта группа тривиальна тогда и только тогда, когда дедекиндово кольцо является факториальным. Свойства дедекиндова кольца, касающиеся умножения его элементов, тесно связаны с устройством этой группы.
«Тогда́ и то́лько тогда́» — логическая связка эквиваленции между утверждениями, применяемая в логике, математике, философии. Чтобы быть эквиваленцией, связка должна быть идентична стандартному материальному условному высказыванию («только тогда» эквивалентно «если … то»), соединённому со своей противоположностью, откуда и название связки. В результате истинность одного утверждения требует такой же истинности другого, то есть либо оба они истинны, либо оба ложны. Можно спорить о том, передаёт ли выражение...
Экстенсиона́л (от лат. extentio — протяжение, пространство, распространение) — термин семантики, обозначающий объём понятия, то есть множество объектов, способных именоваться данной языковой единицей (категорией). Например, в экстенсионал (категория) понятия «человек» входят все объекты, обладающие свойством «быть человеком» (Сократ — это человек, философ — это человек, мыслящее существо — это человек и т.п.).
В теории категорий, категория запятой — специальная конструкция, предоставляющая способ изучения морфизмов не как соотнесений объектов категории друг с другом, а как самостоятельных объектов. Название «категория запятой» появилось из-за первоначального (придуманного Ловером) обозначения, которое включало в себя знак запятой. Впоследствии стандартное обозначение изменилось из соображений удобства.
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Ра́венство (отношение равенства) в математике — бинарное отношение, наиболее логически сильная разновидность отношений эквивалентности.
Телеологи́ческий аргуме́нт (греч. teleo — оканчивать, доводить до совершенства, до конца; logos — слово, суждение, разум, смысл) — аргумент в пользу существования Бога или какого-либо другого разумного творящего существа, основывающийся на явлении существования сложности или осмысленности в природе, к примеру, на существовании таких сложных существ как человек.
Доказательство «от противного» (лат. contradictio in contrarium) в математике — вид доказательства, при котором «доказывание» некоторого суждения (тезиса доказательства) осуществляется через опровержение отрицания этого суждения — антитезиса. Этот способ доказательства основывается на истинности закона двойного отрицания в классической логике.