Связанные понятия
Зацепление , сцепление, сопряжение (англ. coupling) — способ и степень взаимозависимости между программными модулями; сила взаимосвязей между модулями; мера того, насколько взаимозависимы разные подпрограммы или модули.
В статистике, машинном обучении и теории информации снижение размерности — это преобразование данных, состоящее в уменьшении числа переменных путём получения главных переменных. Преобразование может быть разделено на отбор признаков и выделение признаков.
Подробнее: Снижение размерности
Неотрицательное матричное разложение (НМР), а также неотрицательное приближение матрицы, это группа алгоритмов в мультивариантном анализе и линейной алгебре, в которых матрица V разлагается на (обычно) две матрицы W и H, со свойством, что все три матрицы имеют неотрицательные элементы. Эта неотрицательность делает получившиеся матрицы более простыми для исследования. В приложениях, таких как обработка спектрограмм аудиосигнала или данных мускульной активности, неотрицательность свойственна рассматриваемым...
Тип данных (тип) — множество значений и операций на этих значениях (IEEE Std 1320.2-1998).
В обучении машин и распознавании образов признак — это индивидуальное измеримое свойство или характеристика наблюдаемого явления. Выбор информативных, отличительных и независимых признаков является критическим шагом для эффективных алгоритмов в распознавании образов, классификации и регрессии. Признаки обычно являются числовыми, но структурные признаки, такие как строки и графы, используются в синтаксическом распознавании образов.
Подробнее: Признак (обучение машин)
Упоминания в литературе
В нетопологических ГИС цифруются пространственные объекты, изначально не знающие друг о друге, и построение отношений между ними осуществляется в режиме постпроцесса. В топологических же ГИС фиксация топологических пространственных отношений между объектами (смежности, связности, вложенности и др.) является основой их
конструкции. Топологические системы являются более адекватным инструментом для создания цифровых карт, на основе которых можно производить различные аналитические и статистические операции. Топологические модели позволяют представить всю карту в виде графа. Площади, линии и точки описываются с помощью узлов и дуг. Каждая дуга идет от начального к конечному узлу. Известно, что находится справа и слева.
Понятие «структура» является в настоящее время одним из центральных в языкознании. Основными признаками структуры являются целостность и связность. Понятие
связности как основного признака структуры заимствовано из математики. Этот признак является неотъемлемым показателем структуры, однако ее описание через один этот признак не является исчерпывающим. Понятие структуры применительно к тексту предполагает, наряду со связностью, еще один параметр – целостность объекта1. Это понятие заимствовано из естественных наук: свойство всего объекта не выводимо только из свойств отдельных элементов, из системы отношений между ними и не равняется простой арифметической сумме их свойств.
Другая важнейшая характеристика развернутого высказывания – последовательность изложения. Наиболее распространенный тип последовательности изложения – последовательность сложных соподчиненных отношений – временных, пространственных, причинно-следственных, качественных (Н.П. Ерастов, 2003; Т.А. Ладыженская, 1980 и др.). Нарушение последовательности всегда негативно отражается на
связности речи. К числу основных нарушений последовательности изложения относятся: пропуск, перестановка членов последовательности; смешение разных рядов последовательности (когда, например, ребенок, в своем рассказе, не закончив описания какого-либо существенного свойства предмета, переходит к описанию следующего, а затем вновь возвращается к предыдущему и т. п.).
§ 27. Время есть интегральное проявление процессуальности бытия конкретного развивающегося объекта (типа объектов), (выражающее, реализующее) комплекс следующих онтических времяобразующих свойств (одновременно параметрических характеристик) всякого процесса: границы процесса (его начало и окончание); длительность (как собственно процессуальность времени, его размерность, последовательность прошлого, настоящего и будущего, включая длительность и последовательность фаз и этапов процесса и всего процесса в целом); направление процесса (включая изменения, колебания, пульсации и флуктуации направления процесса (его времени)); скорость протекания (темп, ритм) (включая изменения, колебания, ритм как периодичность колебаний процесса (времени процесса); выбор времени (свобода выбора времени) (в точке бифуркации?), включая выбор границ, выбор длительности, выбор направления, выбор скорости (темпоритма). Качественное и количественное выражение этих параметров процессов в абсолютных и соотносительных (относительных) единицах, следования, чередования событий и состояний
в этих системах, связность последующих и предыдущих состояний, ритмичность их наступления и смены является существом времени.
Смыслообразующая роль отдельной фразы, фонемы, знака в этой конструкции возрастает,
поскольку уменьшается связность зеркально-структурированного текста, не отсылающего к трансцендентному содержанию. В частности, из текста элиминируется скрепляющая структура – композиция как выразитель идеального или целостного смысла. Нерепрезентативность и немиметичность искусства постмодерна делают фрагмент суггестивным. С образа композиционной законченности внимание смещается к становлению, постоянной трансформации, подвижности форм. На место монологичности приходит диалог и полилог, допущение множественности интерпретаций.
Связанные понятия (продолжение)
Фракта́л (лат. fractus — дроблёный, сломанный, разбитый) — множество, обладающее свойством самоподобия (объект, в точности или приближённо совпадающий с частью себя самого, то есть целое имеет ту же форму, что и одна или более частей). В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических...
Иерархическая кластеризация (также графовые алгоритмы кластеризации и иерархический кластерный анализ) — совокупность алгоритмов упорядочивания данных, направленных на создание иерархии (дерева) вложенных кластеров. Выделяют два класса методов иерархической кластеризации...
Ядерные методы в машинном обучении — это класс алгоритмов распознавания образов, наиболее известным представителем которого является метод опорных векторов (МОВ, англ. SVM). Общая задача распознавания образов — найти и изучить общие типы связей (например, кластеров, ранжирования, главных компонент, корреляций, классификаций) в наборах данных. Для многих алгоритмов, решающих эти задачи, данные, представленные в сыром виде, явным образом преобразуются в представление в виде вектора признаков посредством...
Подробнее: Ядерный метод
Обучение признакам или обучение представлениям — это набор техник, которые позволяют системе автоматически обнаружить представления, необходимые для выявления признаков или классификации исходных (сырых) данных. Это заменяет ручное конструирование признаков и позволяет машине как изучать признаки, так и использовать их для решения специфичных задач.
Ля́мбда-исчисле́ние (λ-исчисление) — формальная система, разработанная американским математиком Алонзо Чёрчем, для формализации и анализа понятия вычислимости.
Схе́ма — математическая абстракция, позволяющая связать алгебраическую геометрию, коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести геометрическую интуицию и геометрические конструкции, такие как тензорные поля, расслоения и дифференциалы, в теорию колец. Исторически теория схем возникла с целью обобщения и упрощения классической алгебраической геометрии итальянской школы XIX века, занимавшейся исследованием...
Обобщённая фу́нкция или распределе́ние — математическое понятие, обобщающее классическое понятие функции.
Отноше́ние — математическая структура, которая формально определяет свойства различных объектов и их взаимосвязи. Распространёнными примерами отношений в математике являются равенство (=), делимость, подобие, параллельность и многие другие.
Теория моделей — раздел математической логики, который занимается изучением связи между формальными языками и их интерпретациями, или моделями. Название теория моделей было впервые предложено Тарским в 1954 году. Основное развитие теория моделей получила в работах Тарского, Мальцева и Робинсона.
Самоподобный объект — объект, в точности или приближённо совпадающий с частью себя самого (то есть целое имеет ту же форму, что и одна или более частей).
Подробнее: Самоподобие
Кэлеровы дифференциалы представляют собой адаптацию дифференциальных форм для произвольных коммутативных колец или схем. Это понятие было введено Эрихом Кэлером в 1930-х.
Подробнее: Кэлеров дифференциал
Метод главных компонент (англ. principal component analysis, PCA) — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретён Карлом Пирсоном в 1901 году. Применяется во многих областях, в том числе, в эконометрике, биоинформатике, обработке изображений, для сжатия данных, в общественных науках.
Каррирование (от англ. currying, иногда — карринг) — преобразование функции от многих аргументов в набор функций, каждая из которых является функцией от одного аргумента. Возможность такого преобразования впервые отмечена в трудах Готтлоба Фреге, систематически изучена Моисеем Шейнфинкелем в 1920-е годы, а наименование получило по имени Хаскелла Карри — разработчика комбинаторной логики, в которой сведение к функциям одного аргумента носит основополагающий характер.
Латентно-семантический анализ (ЛСА) (англ. Latent semantic analysis, LSA) — это метод обработки информации на естественном языке, анализирующий взаимосвязь между библиотекой документов и терминами, в них встречающимися, и выявляющий характерные факторы (тематики), присущие всем документам и терминам.
Матрица мер конвергенции — матрица содержащая в качестве элементов меры сходства объектов. Матрица отражает попарное сходство объектов. Сходство является показателем, измеренном в порядковой шкале и, следовательно, возможно лишь определение отношений вида: «больше», «меньше» или «равно».
Полиморфизм в языках программирования и теории типов — способность функции обрабатывать данные разных типов.
Решётка (ранее использовался термин структура) — частично упорядоченное множество, в котором каждое двухэлементное подмножество имеет как точную верхнюю (sup), так и точную нижнюю (inf) грани. Отсюда вытекает существование этих граней для любых непустых конечных подмножеств.
Зависимый тип (англ. dependent type) в информатике и логике — тип, который зависит от некоторого значения. Зависимые типы играют ключевую роль в интуиционистской теории типов и построении функциональных языков программирования таких как ATS, Agda и...
Метод спектрального элемента (МСЭ) для решения дифференциальных уравнений в частных производных — это метод конечных элементов, в котором используются кусочные многочлены высокой степени в качестве базисных функций. Метод спектрального элемента предложил в статье 1984 года Т. Патера.
Факторкольцо ́ — общеалгебраическая конструкция, позволяющая распространить на случай колец конструкцию факторгруппы. Любое кольцо является группой по сложению, поэтому можно рассмотреть её подгруппу и взять факторгруппу. Однако для того, чтобы на этой факторгруппе можно было корректно определить умножение, необходимо, чтобы исходная подгруппа была замкнута относительно умножения на произвольные элементы кольца, то есть являлась идеалом.
Универсальная алгебра — раздел математики, изучающий общие свойства алгебраических систем, отыскивая общие черты между такими алгебраическими конструкциями, как группы, кольца, модули, решётки, вводя присущие им всем понятия и общие для всех них утверждения и результаты. Является разделом, занимающим промежуточное положение между математической логикой и общей алгеброй, как реализующий аппарат математической логики в применении к общеалгебраическим структурам.
В функциональном анализе и связанных областях математики стереотипные пространства представляют собой класс топологических векторных пространств, выделяемый неким специальным условием рефлексивности. Этот класс обладает серией замечательных свойств, в частности, он весьма широк (например, содержит все пространства Фреше, и поэтому все банаховы пространства), он состоит из пространств, подчиненных определенному условию полноты, и образует замкнутую моноидальную категорию со стандартными аналитическими...
Подробнее: Стереотипное пространство
Абстрактный клеточный компле́кс — множество с топологией Александрова, в котором неотрицательное целое число, называемое размерностью, присвоено каждой точке. Понятие используется в цифровой топологии для задач анализа двумерных и трёхмерных цифровых изображений. Комплекс называется «абстрактным» потому, что его точки, называемые «клетками», не являются подмножествами хаусдорфова пространства, как это требуется для клеточных комплексов, применяемых в алгебраической топологии и теории гомотопий.
Ме́тоды Ру́нге — Ку́тты (в литературе встречаются названия: ме́тоды Ру́нге — Ку́тта или же ме́тоды Ру́нге — Кутта́) — большой класс численных методов решения задачи Коши для обыкновенных дифференциальных уравнений и их систем. Первые методы данного класса были предложены около 1900 года немецкими математиками К. Рунге и М. В. Куттой.
Размерность Вапника — Червоненкиса или VC-размерность — это характеристика семейства алгоритмов для решения задачи классификации с двумя классами, характеризующая сложность или ёмкость этого семейства. Это одно из ключевых понятий в теории Вапника-Червоненкиса о статистическом машинном обучении, названное в честь Владимира Вапника и Алексея Червоненкиса.
Полуопределённое программирование (en: Semidefinite programming, SDP) — это подраздел выпуклого программирования, которое занимается оптимизацией линейной целевой функции (целевая функция — это заданная пользователем функция, значение которой пользователь хочет минимизировать или максимизировать) на пересечении конусов положительно полуопределённых матриц с аффинным пространством.
Трои́чная ло́гика (трёхзначная логика или тернарная логика) — один из видов многозначной логики, предложенный Яном Лукасевичем в 1920 году. Трёхзначная логика — исторически первая многозначная логика. Она является простейшим расширением двузначной логики.
Техники спектральной кластеризации используют спектр (собственные значения) матрицы сходства данных для осуществления понижения размерности перед кластеризацией в пространствах меньших размерностей. Матрица сходства подаётся в качестве входа и состоит из количественных оценок относительной схожести каждой пары точек в данных.
Подробнее: Спектральная кластеризация
Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных...
Алгебраическая связность графа G — это второе из минимальных собственных значений матрицы Кирхгофа графа G. Это значение больше нуля в том и только в том случае, когда граф G является связным. Это следствие того факта, что сколько раз значение 0 появляется в качестве собственного значения матрицы Кирхгофа, из стольких компонент связности состоит граф. Величина этого значения отражает насколько хорошо связен весь граф и используется для анализа устойчивости и синхронизации сетей.
Линейные динамические системы — это динамические системы, эволюция которых во времени описывается линейным дифференциальным уравнением (для систем с дискретным временем - линейным разностным уравнением). В то время как динамические системы в целом не имеют замкнутой формы решения, линейные динамические системы могут быть решены точно, и у них есть большой набор математических свойств. Линейные системы также могут быть использованы для понимания поведения общих динамических систем, путём расчета точек...
Подробнее: Линейная динамическая система
Функциона́льная зави́симость — бинарное отношение между множествами атрибутов данного отношения и является, по сути, связью типа «один ко многим». Её использование обусловлено тем, что они позволяют формально и строго решить многие проблемы.
В математике термин
матрица Картана имеет три значения. Все они названы по имени французского математика Эли Картана. Фактически, матрицы Картана в контексте алгебр Ли впервые исследовал Вильгельм Киллинг, в то время как форма Киллинга принадлежит Картану.
Дистрибути́вная сема́нтика — это область лингвистики, которая занимается вычислением степени семантической близости между лингвистическими единицами на основании их распределения (дистрибуции) в больших массивах лингвистических данных (текстовых корпусах).
Пучок — структура, используемая для установления отношений между локальными и глобальными данными.
Строковое ядро — это ядерная функция, определённая на строках, т.е. конечных последовательностях символов, которые не обязательно имеют одну и ту же длину. Строковые ядра можно интуитивно понимать как функции, измеряющие похожесть пар строк — чем больше похожи две строки a и b, тем больше значение строкового ядра K(a, b).
Вероятностно приблизительно корректное обучение (ВПК обучение, англ. Probably Approximately Correct learning, (PAC learning) в теории вычислительного обучения — это схема математического анализа машинного обучения. Схему предложил в 1984 Лесли Вэлиант.
В математике и теоретической физике функциональная производная является обобщением производной по направлению. Разница заключается в том, что для последней дифференцирование производится в направлении какого-нибудь вектора, а для первой речь идёт о функции. Оба эти понятия можно рассматривать как обобщение обычного дифференциального исчисления.
Подробнее: Функциональная производная
Схема функциональной целостности (СФЦ) — это логически универсальное графическое средство структурного представления исследуемых свойств системных объектов. Описание аппарата схем функциональной целостности было впервые опубликовано Можаевым А. С. в 1982 году. По построению аппарат СФЦ реализует все возможности алгебры логики в функциональном базисе «И», «ИЛИ» и «НЕ». СФЦ позволяют корректно представлять как все традиционные виды структурных схем (блок-схемы, деревья отказов, деревья событий, графы...
Многообразие Шимуры (иногда многообразие Симуры) — аналог модулярной кривой в более высоких размерностях, который возникает как фактор эрмитова симметрического пространства по конгруэнтной подгруппе редуктивной алгебраической группе, определённой над Q. Термин «многообразие Шимуры» относится к высоким размерностям, в случае одномерных многообразий говорят о кривых Шимуры. Модулярные поверхности Гильберта и модулярные многообразия Зигеля находятся среди лучших известных классов многообразий Шимуры...
Дифференциа́л (от лат. differentia «разность, различие») — линейная часть приращения функции.
Принцип минимальной длины описания (англ. minimum description length, MDL) — это формализация бритвы Оккама, в которой лучшая гипотеза (модель и её параметры) для данного набора данных это та, которая ведёт к лучшему сжиманию даных. Принцип MDL предложил Йорма Риссанен в 1978. Принцип является важной концепцией в теории информации и теории вычислительного обучения.
Ве́ктор (от лат. vector, «несущий») — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве (или на плоскости).
Динамической геометрией часто называют программные среды, которые позволяют делать геометрические построения на компьютере таким образом, что при движении исходных объектов весь чертёж сохраняется. Активно используется в образовании.
Подробнее: Динамическая геометрия