Связанные понятия
Индуктивное логическое программирование (Inductive Logic Programming, ILP) — раздел машинного обучения, который использует логическое программирование как форму представления примеров, фоновых знаний и гипотез. Получив описания уже известных фоновых знаний и набор примеров, представленных как логическая база фактов, система ILP может породить логическую программу в форме гипотез, объясняющую все положительные примеры и ни одного отрицательного.
Семантическая информация — смысловой аспект информации, отражающий отношение между формой сообщения и его смысловым содержанием.
Неконструктивное доказательство (неэффективное доказательство) — класс математических доказательств, доказывающих лишь существование в заданном (как правило, бесконечном) множестве элемента, удовлетворяющего заданным свойствам, но не дающее никакой информации о других свойствах элемента, то есть не позволяющие ни предъявить его, ни приблизительно описать. Доказательства, которые доказывают существование элемента, предъявляя способ получения этого элемента, называются конструктивными.
Предположение об открытости мира , (ПОМ) — предположение в формальной логике о том, что истинность утверждения не зависит от того, «известно» ли какому-либо наблюдателю или агенту о верности данного утверждения.
Логическая вероятность — логическое отношение между двумя предложениями, степень подтверждения гипотезы H свидетельством E.
Парадокс Скулема — противоречивое рассуждение, описанное впервые норвежским математиком Туральфом Скулемом, связанное с использованием теоремы Лёвенгейма — Скулема для аксиоматической теории множеств.
Демпстера-Шафера теория — математическая теория очевидностей (свидетельств) (), основанная на функции доверия (belief functions) и функции правдоподобия (plausible reasoning), которые используются, чтобы скомбинировать отдельные части информации (свидетельства) для вычисления вероятности события. Теория была развита Артуром П. Демпстером и Гленном Шафером.
Когнитивная семантика является частью когнитивной лингвистики. Основными принципами когнитивной семантики являются следующие: во-первых, грамматика есть концептуализация; во-вторых, концептуальная структура закреплена в речи и мотивируется ей; в-третьих, возможность использования языка основывается на общих когнитивных ресурсах, а не на специальном языковом модуле.
В теории множеств, разделе математики, урэлемент или ур-элемент (от немецкой приставки ur- обозначающей «изначальный» или «исходный») — это объект (конкретный или абстрактный), который не является множеством, но который может быть элементом множества. Урэлементы иногда называются «атомами».
Подробнее: Урэлемент
Логическая ошибка — в логике, философии и прочих науках, изучающих познание, ошибка, связанная с нарушением логической правильности умозаключений. Ошибочность обусловлена каким-либо логическим недочётом в доказательстве, что делает доказательство в целом неверным.
Парадоксы импликации — это парадоксы, возникающие в связи с содержанием условных утверждений классической логики. Главная функция этих утверждений — обоснование одних утверждений ссылкой на другие.
Аксиома детерминированности — аксиома теории множеств, обычно обозначаемая AD. Эту аксиому предложили в 1962 году польские математики Ян Мычельский и Гуго Штейнгауз в качестве замены для аксиомы выбора (введённой в 1904 году, обозначается AC). Причиной поиска альтернативы аксиоме выбора стали необычные следствия из этой аксиомы, которые вызывали и продолжают вызывать критику со стороны части математиков. Например, в случае применения аксиомы выбора возникают парадоксальные конструкции вроде «парадокса...
Модальный реализм (англ. Modal realism) — гипотеза, предложенная Дэвидом Льюисом, что все возможные миры такие же реальные, как реальный мир.
Красота математики — восприятие математики как объекта эстетического наслаждения, схожего с музыкой и поэзией.
В теории множеств и смежных с ней областях математики под универсумом фон Неймана (обозначается V), или иерархией множеств по фон Нейману, понимается класс, образованный наследственными фундированными множествами. Такая совокупность, формализуемая теорией множеств Цермело-Френкеля (ZFC) часто используется в качестве интерпретации или обоснования ZFC-аксиом.
Подробнее: Универсум фон Неймана
Общее знание (англ. common knowledge) имеет место в ситуации, когда каждому индивиду из некоторой группы известно о наступлении некого события, о наличии этого знания у других представителей группы, о наличии знания о наличии знания и так далее ad infinitum. Концепция общего знания впервые возникла в философской литературе у Дэвида Келлогга Льюиса (1969). Определение общего знания было дано тогда же социологом Моррисом Фриделлом. Математическая (теоретико-множественная) интерпретация осуществлена...
ДСМ-метод — метод автоматического порождения гипотез. Формализует схему правдоподобного и достоверного вывода, называемую ДСМ-рассуждением.
Логика Хоара (англ. Hoare logic, также Floyd—Hoare logic, или Hoare rules) — формальная система с набором логических правил, предназначенных для доказательства корректности компьютерных программ. Была предложена в 1969 году английским учёным в области информатики и математической логики Хоаром, позже развита самим Хоаром и другими исследователями. Первоначальная идея была предложена в работе Флойда, который опубликовал похожую систему в применении к блок-схемам (англ. flowchart).
Ква́лиа (от лат. qualia (мн. ч.) — свойства, качества, quale (ед. ч.) — какого сорта или какого рода) — термин, используемый в философии, преимущественно в англоязычной аналитической философии сознания, для обозначения сенсорных, чувственных явлений любого рода. Введен американским философом К. И. Льюисом в 1929 году.
«Тогда́ и то́лько тогда ́» — логическая связка эквиваленции между утверждениями, применяемая в логике, математике, философии. Чтобы быть эквиваленцией, связка должна быть идентична стандартному материальному условному высказыванию («только тогда» эквивалентно «если … то»), соединённому со своей противоположностью, откуда и название связки. В результате истинность одного утверждения требует такой же истинности другого, то есть либо оба они истинны, либо оба ложны. Можно спорить о том, передаёт ли выражение...
Логика первого порядка , называемая иногда логикой или исчислением предикатов — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высших порядков.
Саморефере́нция (самоотносимость) — явление, которое возникает в системах высказываний в тех случаях, когда некое понятие ссылается само на себя. Иначе говоря, если какое-либо выражение является одновременно самой функцией и аргументом этой функции.
Двенадцатикратный путь или двенадцать сценариев — это систематическая классификация 12 связанных перечислительных задач, касающихся двух конечных множеств, которые включают классические задачи подсчёта перестановок, сочетаний, мультимножеств и разбиений либо множества, либо числа. Идею классификации приписывают Джиану-Карло Роту, а название двенадцатикратный путь предложил Джоэл Спенсер. Название намекает, что используя те же подходы в 12 случаях, но с небольшими изменениями в условиях, мы получаем...
Описательные ло́гики или дескрипцио́нные ло́гики(сокр. ДЛ, англ. description logics, иногда используется неточный перевод: дескрипти́вные логики) — семейство языков представления знаний, позволяющих описывать понятия предметной области в недвусмысленном, формализованном виде. Они сочетают в себе, с одной стороны, богатые выразительные возможности, а с другой — хорошие вычислительные свойства, такие как разрешимость и относительно невысокая вычислительная сложность основных логических проблем, что...
Подробнее: Дескрипционная логика
«Философский зомби » (англ. philosophical zombie, также употребляются англ. p-zombie, англ. p-zed) — гипотетическое существо, которое неотличимо от нормального человека за исключением того, что у него отсутствует сознательный опыт, квалиа (лат. qualia), или способность ощущать (англ. sentience). Когда зомби, например, колет себя острым предметом, то он не чувствует боли. В то же время он ведёт себя так, как будто действительно её чувствует (он может сказать «ай» и отскочить от раздражителя, или сказать...
Бесконечность — категория человеческого мышления, используемая для характеристики безграничных, беспредельных, неисчерпаемых предметов и явлений, для которых невозможно указание границ или количественной меры. Используется в противоположность конечному, исчисляемому, имеющему предел. Систематически исследуется в математике, логике и философии, также изучаются вопросы о восприятии, статусе и природе бесконечности в психологии, теологии, физике соответственно.
Тео́рия мно́жеств — раздел математики, в котором изучаются общие свойства множеств — совокупностей элементов произвольной природы, обладающих каким-либо общим свойством. Создана во второй половине XIX века Георгом Кантором при значительном участии Рихарда Дедекинда, привнесла в математику новое понимание природы бесконечности, была обнаружена глубокая связь теории с формальной логикой, однако уже в конце XIX — начале XX века теория столкнулась со значительными сложностями в виде возникающих парадоксов...
Бесконечно малая — числовая функция или последовательность, которая стремится к нулю.
Ра́венство (отношение равенства) в математике — бинарное отношение, наиболее логически сильная разновидность отношений эквивалентности.
Фидуциальный вывод (от лат. fides: вера, доверие), как разновидность статистического вывода, был впервые предложен сэром Р. Э. Фишером.
Сомнение — психическое состояние или состояние ума, в котором возникает воздержание от окончательно определённого суждения, или/и раздвоения (троения и т. п.) его становления, из-за неспособности сознания сделать дискретный однозначный вывод. Если ум не может обнаружить причин, аргументов, которые бы позволили ему прийти к однозначному решению относительно правильности или ошибочности своего мнения, тогда сомнение является отрицательным (то есть фактически блокирование дальнейшего анализа и выводов...
В математической логике, Эрбранова интерпретация — это интерпретация, в которой константам и функциональным символам присвоен очень простой смысл. Конкретнее, каждая константа интерпретируется как она сама, функциональный символ же интерпретируется как функция, которая применяется. Интерпретация также определяет предикатные символы как задающие подмножество соответствующей Эрбрановой базы, фактически задавая, каким образом вычисляется значение замкнутых формул. Это позволяет интерпретировать символы...
Логика Бэрроуза — Абади — Нидхэма (англ. Burrows-Abadi-Needham logic) или BAN-логика (англ. BAN logic) — это формальная логическая модель для анализа знания и доверия, широко используемая при анализе протоколов аутентификации.
Про
наследование виртуальных методов, см виртуальный метод.Виртуа́льное насле́дование (англ. virtual inheritance) в языке программирования C++ — один из вариантов наследования, который нужен для решения некоторых проблем, порождаемых наличием возможности множественного наследования (особенно «ромбовидного наследования»), путём разрешения неоднозначности того, методы которого из суперклассов (непосредственных классов-предков) необходимо использовать. Оно применяется в тех случаях, когда множественное...
Рекурсивное определение или индуктивное определение определяет сущность в терминах её самой (то есть рекурсивно), хотя и полезным способом. Для того, чтобы это было возможно, определение в любом данном случае должно быть хорошо-основанным, избегая бесконечной регрессии.
Объяснение является набором утверждений, обычно построенных для описания набора фактов, в которых уточняются причины, контекст и последствия этих фактов. Это описание может устанавливать правила или законы и может разъяснять существующие правила и/или законы в отношении объектов и явлений, которые рассматриваются. Компоненты объяснения могут быть неявными и быть переплетены друг с другом.
Эпистемическая теория игр (англ. epistemic game theory), иначе называемая интерактивной эпистемологией (англ. interactive epistemology), формализует допущения о верах и знаниях игроков относительно рациональности, поведения оппонентов, их собственных знаний и вер. Эти допущения лежат в основе различных концепций решения — правил, в соответствии с которыми прогнозируется поведение игроков и, следовательно, исход игры. Допущения часто описаны на интуитивном уровне, и эпистемический анализ необходим...
Ве́кторная моде́ль (англ. vector space model) — в информационном поиске представление коллекции документов векторами из одного общего для всей коллекции векторного пространства.
Алгоритмическая разрешимость — свойство формальной теории обладать алгоритмом, определяющим по данной формуле, выводима она из множества аксиом данной теории или нет. Теория называется разрешимой, если такой алгоритм существует, и неразрешимой, в противном случае. Вопрос о выводимости в формальной теории является частным, но вместе с тем важнейшим случаем более общей проблемы разрешимости.
Принцип минимальной длины описания (англ. minimum description length, MDL) — это формализация бритвы Оккама, в которой лучшая гипотеза (модель и её параметры) для данного набора данных это та, которая ведёт к лучшему сжиманию даных. Принцип MDL предложил Йорма Риссанен в 1978. Принцип является важной концепцией в теории информации и теории вычислительного обучения.
Парадокс интересных чисел — полуюмористический парадокс, который возникает из-за попыток классифицировать натуральные числа как «интересные» и «скучные». Согласно этому парадоксу, все натуральные числа являются интересными. Доказательство этого утверждения осуществляется методом «от противного»: если существует непустое множество неинтересных натуральных чисел, то в этом множестве существует наименьшее число, но наименьшее неинтересное число уже само по себе интересно — что и создаёт противоречие...
Конструктивная математика — абстрактная наука о конструктивных процессах, человеческой способности осуществлять их, и об их результатах — конструктивных объектах.
Мно́жество — одно из ключевых понятий математики; это математический объект, сам являющийся набором, совокупностью, собранием каких-либо объектов, которые называются элементами этого множества и обладают общим для всех их характеристическим свойством. Изучением общих свойств множеств занимаются теория множеств, а также смежные разделы математики и математической логики.
Оккамово обучение в теории вычислительного обучения является моделью алгоритмического обучения, где целью обучения является получение сжатого представления имеющихся тренировочных данных. Метод тесно связан с почти корректным обучением (ПК обучение, англ. Probably Approximately Correct learning, PAC learning), где учитель оценивает прогнозирующую способность тестового набора.
Основания математики — математическая система, разработанная с целью обеспечить вывод математического знания из небольшого числа чётко сформулированных аксиом с помощью логических правил вывода, тем самым гарантируя надёжность математических истин. Основания математики включают в себя три компонента.
Машина вывода — программа, которая выполняет логический вывод из предварительно построенной базы фактов и правил в соответствии с законами формальной логики.
Семантика Крипке является распространенной семантикой для неклассических логик, таких как интуиционистская логика и модальная логика. Она была создана Солом Крипке в конце 1950-х — начале 1960-х годов. Это было большим достижением для развития теории моделей для неклассических логик.
Число ́ — основное понятие математики, используемое для количественной характеристики, сравнения, нумерации объектов и их частей. Письменными знаками для обозначения чисел служат цифры, а также символы математических операций. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа с развитием науки значительно расширилось.
Парадокс Греллинга — Нельсона (парадокс Вейля, парадокс Греллинга) — семантический самодескриптивный парадокс, сформулированный в 1908 году Леонардом Нельсоном и Куртом Греллингом и иногда ошибочно приписываемый Герману Вейлю. Похож на ряд аналогичных известных парадоксов, таких как парадокс брадобрея и парадокс Рассела.