Связанные понятия
Финитизм (лат. finitus — определенный, законченный) — философское учение, отрицающее понятие бесконечного и утверждающее, что бесконечность не имеет места ни во вселенной, ни в микромире, ни в человеческом мышлении. Была широко популярна в Древнем мире и Средних веках до Коперника. Финитизм предполагает, что Вселенная конечна и имеет определённые размеры. Микромир также имеет пределы делимости (см. атомизм).
Рекурсивное определение или индуктивное определение определяет сущность в терминах её самой (то есть рекурсивно), хотя и полезным способом. Для того, чтобы это было возможно, определение в любом данном случае должно быть хорошо-основанным, избегая бесконечной регрессии.
Семантика Крипке является распространенной семантикой для неклассических логик, таких как интуиционистская логика и модальная логика. Она была создана Солом Крипке в конце 1950-х — начале 1960-х годов. Это было большим достижением для развития теории моделей для неклассических логик.
Метатеория — теория, анализирующая методы и свойства другой теории, так называемой предметной или объектной теории.
Теория топосов — раздел теории категорий, изучающий топосы — категории с определёнными дополнительными структурами, и математические (категорные) методы, связанные с топосами.
Теорема существования — утверждение, которое устанавливает, при каких условиях существует решение математической задачи или математический объект, например производная, неопределенный интеграл, определенный интеграл, решение уравнения и т. д. При доказательстве теорем существования используются сведения из теории множеств. Теоремы существования играют очень важную роль в различных приложениях математики, например при математическом моделировании различных явлений и процессов. Математическая модель...
Геометрическая алгебра — историческое построение алгебры во второй книге «Начал» Евкида, где операции определялись непосредственно для геометрических величин, а теоремы доказывались геометрическими построениями.
Синтети́ческое сужде́ние — суждение, расширяющее и добавляющее информацию об объекте. Противоположностью синтетического суждение является аналитическое суждение. Истинность синтетических суждений может быть установлена «только в процессе их сопоставления с той реальностью, о которой они говорят». Примером синтетического суждения является утверждение «Все лебеди белые» (при условии что слово лебедь не подразумевает белый цвет птицы), поскольку оно обобщает и дает новую информацию о таком предмете...
Тео́рия поле́й — раздел математики, занимающийся изучением свойств полей, то есть структур, обобщающих свойства сложения, вычитания, умножения и деления чисел.
Идеальные числа были введены в 1847 году немецким математиком Эрнстом Эдуардом Куммером и послужили отправной точкой для определения идеалов колец, введённых позже Дедекиндом.
Подробнее: Идеальное число
Равноме́рная непреры́вность в математическом и функциональном анализе — это свойство функции быть одинаково непрерывной во всех точках области определения.
Поскольку философия состоит из рациональных рассуждений, логика является первичным атрибутом философии. Для анализа различных философских концепций, для их сопоставления друг с другом необходимо проведение критического анализа различных философских утверждений и теорий. В связи с тем, что человеческое мышление формулируется текстуально, логика тесно связана с анализом текстов и языков. Логика формализует текстуальное рассуждение и определяет его формы, которые приемлемы для анализа. Первым шагом...
Подробнее: Философская логика
Поток Риччи — система дифференциальных уравнений в частных производных, описывающая деформацию римановой метрики на многообразии.
Аналити́ческое сужде́ние — суждение, которое не привносит никакой новой информации об объекте. Противоположностью аналитического суждения является синтетическое суждение. Истинность аналитических суждений может быть установлена без обращения к реальному миру. Примером аналитического суждения является утверждение «Всякий холостяк не женат», поскольку слово «холостяк» и выражение «не женат» одинаковы по смыслу. Таким образом, это суждение не добавляет никакого нового смысла.
Алгоритмическая теория информации — это область информатики, которая пытается уловить суть сложности, используя инструменты из теоретической информатики. Главная идея — это определить сложность (или описательную сложность, колмогоровскую сложность, сложность Колмогорова-Хайтина) строки как длину кратчайшей программы, которая выводит заданную строку. Строки, которые могут выводиться короткими программами, рассматриваются как не очень сложные. Эта нотация удивительно глубока и может быть использована...
Нумерация Гёделя — это функция g, сопоставляющая каждому объекту некоторого формального языка её номер. С её помощью можно явно пронумеровать следующие объекты языка: переменные, предметные константы, функциональные символы, предикатные символы и формулы, построенные из них. Построение нумерации Гёделя для объектов теории называется арифметизацией теории — оно позволяет переводить высказывания, аксиомы, теоремы, теории в объекты арифметики. При этом требуется, чтобы нумерация g была эффективно вычислимой...
Операторная алгебра — алгебра операторов, действующих на топологическом векторном пространстве. Операторные алгебры активно применяются в теории представлений и в дифференциальной геометрии, в квантовой механике и в квантовой статистической физике, в квантовой теории поля и в современной классической механике.
Абдукция (от лат. ab — от и лат. ducere — водить) — познавательная процедура выдвижения гипотез.
Функция принадлежности нечёткого множества — обобщение индикаторной (или характеристической) функции классического множества. В нечёткой логике она представляет степень принадлежности каждого члена пространства рассуждения к данному нечёткому множеству.
Модель системы аксиом — какой-либо математический объект, который отвечает данной системе аксиом. Истинность системы аксиом можно доказать, только построив модель в рамках другой системы аксиом, которая считается «истинной». Кроме того, модель позволяет наглядно продемонстрировать некоторые особенности данной аксиоматической теории.
Формализм — один из подходов к философии математики, пытающийся свести проблему оснований математики к изучению формальных систем. Наряду с логицизмом и интуиционизмом считался в XX веке одним из направлений фундаментализма в философии математики.
Формальная семантика — дисциплина, изучающая семантику (интерпретации) формальных и естественных языков путём их формального описания в математических терминах.
Основания геометрии — область математики, изучающая аксиоматические системы евклидовой геометрии, а также различных неевклидовых геометрий.
Теоре́ма Тоне́лли — Фуби́ни в математическом анализе, теории вероятностей и смежных дисциплинах сводит вычисление двойного интеграла к повторным.
Операционализм — течение в философии и методологии науки XX века, полагающее операционализацию критерием научности теоретических и эмпирических суждений.
Форма́льные нау́ки — совокупность наук, занимающихся исследованием формальных систем. К формальным наукам относятся: математика, логика, кибернетика, теоретическая информатика, теория информации, теория систем, теория принятия решений, статистика, некоторые аспекты лингвистики.
Рассуждение — последовательный ряд мыслей и умозаключений в контексте определённой темы, изложенных в логически последовательной форме.
Квантовый хаос (англ. quantum chaos, нем. Quantenchaos) — в физике: динамика квантовых систем, являющихся хаотическими в классическом пределе.
Логика второго порядка в математической логике — формальная система, расширяющая логику первого порядка возможностью квантификации общности и существования не только над переменными, но и над предикатами. Логика второго порядка несводима к логике первого порядка. В свою очередь, она расширяется логикой высших порядков и теорией типов.
Лемма о вложенных отрезках , или принцип вложенных отрезков Коши — Кантора, или принцип непрерывности Кантора — фундаментальное утверждение в математическом анализе, связанное с полнотой поля вещественных чисел.
Логици́зм — одно из основных направлений обоснования математики и философии математики, ставящее целью сведе́ние исходных математических понятий к понятиям логики. Двумя другими основными направлениями являются интуиционизм и формализм.
Степень трансцендентности расширения поля в общей алгебре — это величина, которая даёт грубую оценку «масштаба» расширения. Другими словами, чем больше степень трансцендентности, тем больше расширенное поле содержит трансцендентных (то есть, неалгебраических по отношению к исходному полю) элементов.
Универса́льный язы́к (всеобщий язык; лат. lingua generalis) — язык, система терминов, определенных строго и однозначно, а потому допускающих над собой чисто формальные операции.
Анализ формальных понятий (АФП) (англ. Formal Concept Analysis, FCA) — ветвь прикладной алгебраической теории решёток. Традиционно АФП относят к области концептуальных структур в искусственном интеллекте.
Преобразование в математике — отображение (функция) множества в себя. Иногда (в особенности в математическом анализе и геометрии) преобразованиями называют отображения, переводящие некоторое множество в другое множество.
Гипотезы Вейля — математические гипотезы о локальных дзета-функциях проективных многообразий над конечными полями.
Абсолютная непрерывность — в математическом анализе, свойство функций и мер, состоящее, неформально говоря, в выполнении теоремы Ньютона — Лейбница о связи между интегрированием и дифференцированием.
Зада́ча Не́ймана , вторая краевая задача — в дифференциальных уравнениях краевая задача с заданными граничными условиями для производной искомой функции на границе области — так называемые граничные условия второго рода. По типу области задачи Неймана можно разделить на два типа: внутренние и внешние. Названа в честь Карла Неймана.
Закон повторного логарифма — предельный закон теории вероятностей. Теорема определяет порядок роста делителя последовательности сумм случайных величин, при котором эта последовательность не сходится к нулю, но остается почти всюду в конечных пределах.
Теорема о монотонной сходимости (теорема Беппо́ Ле́ви) — это теорема из теории интегрирования Лебега, имеющая фундаментальное значение для функционального анализа и теории вероятностей, где служит инструментом для доказательства многих положений. Даёт одно из условий при которых можно переходить к пределу под знаком интеграла Лебега, теорема позволяет доказать существование суммируемого предела у некоторых ограниченных функциональных последовательностей.
В теории вычислимости
алгоритмически неразрешимой задачей называется задача, имеющая ответ да или нет для каждого объекта из некоторого множества входных данных, для которой (принципиально) не существует алгоритма, который бы, получив любой возможный в качестве входных данных объект, останавливался и давал правильный ответ после конечного числа шагов.
Дискре́тное простра́нство в общей топологии и смежных областях математики — это пространство, все точки которого изолированы друг от друга в некотором смысле.
Направленное множество в математике — непустое множество A с заданным на нем рефлексивным транзитивным отношением ≤ (то есть предпорядком), обладающее дополнительным свойством: у любой пары элементов из A есть верхняя грань в A.
Теорема о четырёх вершинах утверждает, что функция кривизны простой замкнутой гладкой плоской кривой имеет по меньшей мере четыре локальных экстремума (в частности, по меньшей мере два локальных максимума и по меньшей мере два локальных минимума). Название теоремы отражает соглашение называть экстремальные точки функции кривизны вершинами.
Полурешётка (англ. semilattice, до 1960-х годов также использовался термин полуструктура) в общей алгебре — полугруппа, бинарная операция в которой коммутативна и идемпотентна.
В общей алгебре,
поле k называется совершенным если выполняется одно из следующих эквивалентных условий...
Синглетон — множество с единственным элементом. Например, множество {0} является синглетоном.