Связанные понятия
Рекурсивное определение или индуктивное определение определяет сущность в терминах её самой (то есть рекурсивно), хотя и полезным способом. Для того, чтобы это было возможно, определение в любом данном случае должно быть хорошо-основанным, избегая бесконечной регрессии.
Теория топосов — раздел теории категорий, изучающий топосы — категории с определёнными дополнительными структурами, и математические (категорные) методы, связанные с топосами.
Степень трансцендентности расширения поля в общей алгебре — это величина, которая даёт грубую оценку «масштаба» расширения. Другими словами, чем больше степень трансцендентности, тем больше расширенное поле содержит трансцендентных (то есть, неалгебраических по отношению к исходному полю) элементов.
Модель системы аксиом — какой-либо математический объект, который отвечает данной системе аксиом. Истинность системы аксиом можно доказать, только построив модель в рамках другой системы аксиом, которая считается «истинной». Кроме того, модель позволяет наглядно продемонстрировать некоторые особенности данной аксиоматической теории.
Тео́рия поле́й — раздел математики, занимающийся изучением свойств полей, то есть структур, обобщающих свойства сложения, вычитания, умножения и деления чисел.
Теорема о четырёх вершинах утверждает, что функция кривизны простой замкнутой гладкой плоской кривой имеет по меньшей мере четыре локальных экстремума (в частности, по меньшей мере два локальных максимума и по меньшей мере два локальных минимума). Название теоремы отражает соглашение называть экстремальные точки функции кривизны вершинами.
Равноме́рная непреры́вность в математическом и функциональном анализе — это свойство функции быть одинаково непрерывной во всех точках области определения.
Теорема существования — утверждение, которое устанавливает, при каких условиях существует решение математической задачи или математический объект, например производная, неопределенный интеграл, определенный интеграл, решение уравнения и т. д. При доказательстве теорем существования используются сведения из теории множеств. Теоремы существования играют очень важную роль в различных приложениях математики, например при математическом моделировании различных явлений и процессов. Математическая модель...
Единичный отрезок — величина, принимаемая за единицу при геометрических построениях. При изображении декартовой системы координат, единичный отрезок обычно отмечается на каждой из осей.
Лемма о вложенных отрезках , или принцип вложенных отрезков Коши — Кантора, или принцип непрерывности Кантора — фундаментальное утверждение в математическом анализе, связанное с полнотой поля вещественных чисел.
Гиппокра́товы лу́ночки — серповидные фигуры, указанные Гиппократом Хиосским, ограниченные дугами двух окружностей.
Теоре́ма Тоне́лли — Фуби́ни в математическом анализе, теории вероятностей и смежных дисциплинах сводит вычисление двойного интеграла к повторным.
Как и для криволинейных интегралов, существуют два рода поверхностных интегралов.
Подробнее: Поверхностные интегралы
Нормальная форма Чибрарио — нормальная форма дифференциального уравнения, не разрешённого относительно производной, в окрестности простейшей особой точки. Название предложено В. И. Арнольдом в честь итальянского математика Марии Чибрарио, установившей эту нормальную форму для одного класса уравнений.
Парадоксами
теории множеств называют * рассуждения, демонстрирующие противоречивость наивной теории множеств, такие как...
Преобразование в математике — отображение (функция) множества в себя. Иногда (в особенности в математическом анализе и геометрии) преобразованиями называют отображения, переводящие некоторое множество в другое множество.
Конгруэнция — отношение эквивалентности на алгебраической системе, сохраняющееся при основных операциях. Понятие играет важную роль в универсальной алгебре: всякая конгруэнция порождает соответствующую факторсистему — разбиение исходной алгебраической системы на классы эквивалентности по отношению к конгруэнции.
Зада́ча Не́ймана , вторая краевая задача — в дифференциальных уравнениях краевая задача с заданными граничными условиями для производной искомой функции на границе области — так называемые граничные условия второго рода. По типу области задачи Неймана можно разделить на два типа: внутренние и внешние. Названа в честь Карла Неймана.
Метод простой итерации — один из простейших численных методов решения уравнений. Метод основан на принципе сжимающего отображения, который применительно к численным методам в общем виде также может называться методом простой итерации или методом последовательных приближений. В частности, для систем линейных алгебраических уравнений существует аналогичный метод итерации.
Синглетон — множество с единственным элементом. Например, множество {0} является синглетоном.
Полурешётка (англ. semilattice, до 1960-х годов также использовался термин полуструктура) в общей алгебре — полугруппа, бинарная операция в которой коммутативна и идемпотентна.
В коммутативной алгебре, дробный идеал — это обобщение понятия идеала целостного кольца, особенно полезное при изучении дедекиндовых колец. Условно говоря, дробные идеалы — это идеалы со знаменателями. В случаях, когда одновременно обсуждаются дробные и обычные идеалы, последние называют целыми идеалами.
Нумерация Гёделя — это функция g, сопоставляющая каждому объекту некоторого формального языка её номер. С её помощью можно явно пронумеровать следующие объекты языка: переменные, предметные константы, функциональные символы, предикатные символы и формулы, построенные из них. Построение нумерации Гёделя для объектов теории называется арифметизацией теории — оно позволяет переводить высказывания, аксиомы, теоремы, теории в объекты арифметики. При этом требуется, чтобы нумерация g была эффективно вычислимой...
Доказательные вычисления — целенаправленные вычисления на ЭВМ, комбинируемые с аналитическими исследованиями, которые приводят к строгому установлению новых фактов и доказательству теорем.
Зада́ча Гурса ́ — это разновидность краевой задачи для гиперболических уравнений и систем 2-го порядка с двумя независимыми переменными по данным на двух выходящих из одной точки характеристических кривых.
Идеальные числа были введены в 1847 году немецким математиком Эрнстом Эдуардом Куммером и послужили отправной точкой для определения идеалов колец, введённых позже Дедекиндом.
Подробнее: Идеальное число
Слабая сходимость в функциональном анализе — вид сходимости в топологических векторных пространствах.
Направленное множество в математике — непустое множество A с заданным на нем рефлексивным транзитивным отношением ≤ (то есть предпорядком), обладающее дополнительным свойством: у любой пары элементов из A есть верхняя грань в A.
Максимальным идеалом коммутативного кольца называется всякий собственный идеал кольца, не содержащийся ни в каком другом собственном идеале.
Подробнее: Максимальный идеал
Дискре́тное простра́нство в общей топологии и смежных областях математики — это пространство, все точки которого изолированы друг от друга в некотором смысле.
Теорема о монотонной сходимости (теорема Беппо́ Ле́ви) — это теорема из теории интегрирования Лебега, имеющая фундаментальное значение для функционального анализа и теории вероятностей, где служит инструментом для доказательства многих положений. Даёт одно из условий при которых можно переходить к пределу под знаком интеграла Лебега, теорема позволяет доказать существование суммируемого предела у некоторых ограниченных функциональных последовательностей.
Сравнение топологий — это понятие, позволяющее «сравнивать» различные топологические структуры на одном и том же множестве. Множество всех топологий на фиксированном множестве образует частично упорядоченное множество относительно этого отношения.
Дифференциа́л (от лат. differentia — разность, различие) в математике — линейная часть приращения дифференцируемой функции или отображения.
Абсолютная непрерывность — в математическом анализе, свойство функций и мер, состоящее, неформально говоря, в выполнении теоремы Ньютона — Лейбница о связи между интегрированием и дифференцированием.
Недезаргова плоскость — это проективная плоскость, не удовлетворяющая теореме Дезарга, другими словами, не являющаяся дезарговой. Теорема Дезарга верна во всех проективных пространств размерности, не равной 2, то есть, для всех классических проективных геометрий над полем (или телом), но Гильберт обнаружил, что некоторые проективные плоскости не удовлетворяют теореме.
В общей алгебре,
поле k называется совершенным если выполняется одно из следующих эквивалентных условий...
Финитизм (лат. finitus — определенный, законченный) — философское учение, отрицающее понятие бесконечного и утверждающее, что бесконечность не имеет места ни во вселенной, ни в микромире, ни в человеческом мышлении. Была широко популярна в Древнем мире и Средних веках до Коперника. Финитизм предполагает, что Вселенная конечна и имеет определённые размеры. Микромир также имеет пределы делимости (см. атомизм).
Эллиптические уравнения — класс дифференциальных уравнений в частных производных, описывающих стационарные процессы.
Подробнее: Эллиптическое уравнение
Закон повторного логарифма — предельный закон теории вероятностей. Теорема определяет порядок роста делителя последовательности сумм случайных величин, при котором эта последовательность не сходится к нулю, но остается почти всюду в конечных пределах.
Универсальная тригонометрическая подстановка , в англоязычной литературе называемая в честь Карла Вейерштрасса подстановкой Вейерштрасса, применяется в интегрировании для нахождения первообразных, определённых и неопределённых интегралов от рациональных функций от тригонометрических функций. Без потери общности можно считать в данном случае такие функции рациональными функциями от синуса и косинуса. Подстановка использует тангенс половинного угла.
Функция принадлежности нечёткого множества — обобщение индикаторной (или характеристической) функции классического множества. В нечёткой логике она представляет степень принадлежности каждого члена пространства рассуждения к данному нечёткому множеству.
Гипотезы Вейля — математические гипотезы о локальных дзета-функциях проективных многообразий над конечными полями.
Эрмитова форма — естественный аналог понятия симметричной билинейной формы для комплексных векторных пространств. Для эрмитовых форм верны аналоги многих свойств симметрических форм: приведение к каноническому виду, понятие положительной определенности и критерий Сильвестра.
Геометрия треугольника — раздел планиметрии, изучающий свойства треугольника и связанные с ним объекты (центры, прямые и т. д.)