Связанные понятия
В геометрии правильный косой многогранник — это обобщение множества правильных многогранников, которое включает возможность непланарных граней или вершинных фигур. Коксетер рассматривал косые вершинные фигуры, которые создавали новые четырёхмерные правильные многогранники, а много позднее Бранко Грюнбаум рассматривал правильные косые грани.
Треугольная бипирамида — это вид шестигранника, первый многогранник в бесконечной последовательности гранетранзитивных бипирамид. Многогранник двойственен треугольной призме.
Ромботриаконтáэдр( от греч. τριάκοντα (греч. τριάντα) — «тридцать» и εδρον — «грань») — выпуклый тридцатигранник с одинаковыми ромбическими гранями. Относится к каталановым телам. Является двойственным по отношению к икосододекаэдру и зоноэдром.
Подробнее: Ромботриаконтаэдр
Плосконосый многогранник — это многогранник, полученный альтернированием (частичным усечением) соответствующего всеусечённого или усечённого многогранника, в зависимости от определения. Некоторые (не все) авторы включают в плосконосые многогранники антипризмы, так как они получаются таким построением из вырожденного «многогранника» всего с двумя гранями (диэдра).
Семиуго́льник , называемый иногда гептагон — многоугольник с семью углами. Семиугольником также называют всякий предмет такой формы.
Пра́вильный стодвадцатияче́йник, или просто стодвадцатияче́йник — один из правильных многоячейников в четырёхмерном пространстве. Известен также под другими названиями: гекатоникосахор (от др.-греч. ἑκατόν — «сто», εἴκοσι — «двадцать» и χώρος — «место, пространство»), гипердодека́эдр (поскольку является четырёхмерным аналогом додекаэдра), додекаплекс (то есть «комплекс додекаэдров»), полидодека́эдр. Двойственен шестисотячейнику.
Подробнее: Стодвадцатиячейник
Апейрогон (от др.-греч. ἄπειρος — бесконечный или безграничный и др.-греч. γωνία — угол) — обобщённый многоугольник со счётно-бесконечным числом сторон.
В геометрии четырёхска́тный ку́пол — это один из многогранников Джонсона (J4 = (по Залгаллеру) М5). Его можно получить как срез ромбокубооктаэдра. Как и у всех куполов, многоугольник в основании имеет удвоенное число рёбер и вершин по сравнению с верхним многоугольником. В нашем случае основанием является восьмиугольник.
Растяжение правильного многомерного многогранника образует однородный политоп, но операция может быть применена к любому выпуклому политопу, как продемонстрировано для многогранников в статье «Нотация Конвея для многогранников». В случае трёхмерных многогранников растянутый многогранник имеет все грани исходного многогранника, все грани двойственного многогранника и дополнительные квадратные грани на месте исходных рёбер.
В геометрии
трёхскатный купол представляет собой один из многогранников Джонсона (J3 = (по Залгаллеру) М4). Купол можно рассматривать как половину кубооктаэдра.
Равносторонний многоугольник — многоугольник, у которого все стороны равны. Например, равносторонний треугольник — это треугольник, у которого все три стороны одинаковы; все равносторонние треугольники подобны и имеют внутренние углы 60 градусов. Равносторонний четырёхугольник — это ромб, и квадрат является частным случаем ромба.
Флаг в геометрии многогранников — последовательность граней (различной размерности) абстрактного многогранника, в которой каждая предыдущая грань содержится в последующей и последовательность содержит ровно по одной грани каждой размерности.
Ромбоикосододекаэдр — полуправильный многогранник, состоящий из 12 правильных пятиугольников, 30 квадратов и 20 треугольников. Имеет икосаэдрический тип симметрии. В каждой из вершин сходятся треугольник, пятиугольник и 2 квадрата.
Многогранник, многоугольник или мозаика является изотоксальным или рёберно транзитивным, если его симметрии действуют транзитивно на его рёбрах. Неформально это означает, что имеется только один вид рёбер у объекта — если даны два ребра, существует параллельный перенос, вращение и/или зеркальное отражение, переводящее одно ребро в другое, не меняя область, занимаемую объектом.
Подробнее: Изотоксальная фигура
Описанный многоугольник , известный также как тангенциальный многоугольник — это выпуклый многоугольник, который содержит вписанную окружность. Это окружность, которая касательна каждой стороны многоугольника. Двойственный многоугольник описанного многоугольника — это многоугольник, который имеет описанную окружность, проходящую через все его вершины.
Ромбокубооктаэдр или ромбокубоктаэдр — полуправильный многогранник, гранями которого являются 18 квадратов и 8 треугольников. Также называется малым ромбокубооктаэдром.
Группы
сферической симметрии также называются точечными группами в трёхмерном пространстве, однако эта статья рассматривает только конечные симметрии.
Пра́вильный икоса́эдр (от др.-греч. εἴκοσι «двадцать»; ἕδρον «сиденье», «основание») — правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12.
В геометрии
домино замощение области в евклидовой плоскости — это мозаика области плитками домино, образованными объединением двух единичных квадратов, соединённых по ребру. Эквивалентно это паросочетание в графе решётки, образованное помещением вершины в центр каждого квадрата области и соединением двух вершин, если два соответствующих квадрата смежны.
Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а...
В евклидовой геометрии равнодиагональный четырёхугольник — это выпуклый четырёхугольник, две диагонали которого имеют равные длины. Равнодиагональные четырёхугольники имели важное значение в древней индийской математике, где в классификации в первую очередь выделялись равнодиагональные четырёхугольники, и только потом четырёхугольники подразделялись на другие типы .
Изогона́льное сопряже́ние — геометрическое преобразование, получаемое отражением прямых, соединяющих исходные точки с вершинами заданного треугольника относительно биссектрис углов треугольника.
Гипе́рбола Ки́перта — гипербола, определяемая по данному треугольнику. Если последний представляет собой треугольник общего положения, то эта гипербола является единственным коническим сечением, проходящим через его вершины, ортоцентр и центроид.
Недезаргова плоскость — это проективная плоскость, не удовлетворяющая теореме Дезарга, другими словами, не являющаяся дезарговой. Теорема Дезарга верна во всех проективных пространств размерности, не равной 2, то есть, для всех классических проективных геометрий над полем (или телом), но Гильберт обнаружил, что некоторые проективные плоскости не удовлетворяют теореме.
В планиметрии изотоми́ческим сопряже́нием называется одно из преобразований плоскости, порождаемое заданным на плоскости треугольником ABC.
Подробнее: Изотомическое сопряжение
Срединный граф — граф, представляющий рёбра смежности внутри граней заданного планарного графа.
Гексамино — шестиклеточное полимино, то есть плоская фигура, состоящая из шести равных квадратов, соединённых сторонами. С фигурами гексамино, как со всеми полимино, связано много задач занимательной математики.
Двенадцатиуго́льник , додекаго́н (греч. δώδεκα — двенадцать и греч. γωνία — угол) — многоугольник с 12 углами и 12 сторонами. Как правило, додекагоном называют правильный многоугольник, то есть такой, у которого все стороны и все углы равны (в случае додекагона углы равны 150°). Правильный двенадцатиугольник используется в некоторых странах в качестве формы для монет.
Усечённый кубооктаэдр , усечённый кубоктаэдр — полуправильный многогранник (архимедово тело) с 12 квадратными гранями, 8 гранями в виде правильного шестиугольника, 6 гранями в виде правильного восьмиугольника, 48 вершинами и 72 рёбрами. Поскольку каждая из граней многогранника имеет центральную симметрию (что эквивалентно повороту на 180°), усечённый кубооктаэдр является зоноэдром.
В теории чисел квадратным треугольным числом (или треугольным квадратным числом) называется число, являющееся как треугольным, так и квадратным.
Подробнее: Квадратное треугольное число
Интервальная размерность графа — это минимальная размерность, в которой заданный граф может быть представлен в виде графа пересечений гиперпрямоугольников (то есть многомерных прямоугольных параллелепипедов) с параллельными осям рёбрами. То есть должно существовать один-к-одному соответствие между вершинами графа и множеством гиперпрямоугольников, таких, что прямоугольники пересекаются тогда и только тогда, когда существует ребро, соединяющее соответствующие вершины.
Купол можно рассматривать как призму, где один из многоугольников наполовину стянут путём объединения вершин попарно.
Диэдр — вид многогранника, состоящего из двух многоугольных граней, имеющих общий набор рёбер. В трёхмерном евклидовом пространстве он является вырожденным, если его грани плоские, в то время как в трёхмерном сферическом пространстве диэдр с плоскими гранями может рассматриваться как линза, примером которой является фундаментальная область линзового пространства L(p,q) .
Пра́вильный двадцатичетырёхъяче́йник, или просто двадцатичетырёхъяче́йник, или икоситетрахор (от др.-греч. εἴκοσι — «двадцать», τέτταρες — «четыре» и χώρος — «место, пространство»), — один из правильных многоячейников в четырёхмерном пространстве.
Подробнее: Двадцатичетырёхъячейник
Квадратная решётка — это вид решётки в двумерном евклидовом пространстве. Решётка является двумерной версией целочисленной решётки и обозначается Z2. Решётка является одной из пяти типов двумерных решёток, классифицированных по группам симметрии, Группа симметрии решётки в обозначениях IUC — p4m, в нотации Коксетера — , а в орбифолдной нотации — *442.
В геометрии 4-мерный многогранник — это многогранник в четырёхмерном пространстве. Многогранник является связанной замкнутой фигурой, состоящей из многогранных элементов меньшей размерности — вершин, рёбер, граней (многоугольников) и ячеек (3-мерных многогранников). Каждая грань принадлежит ровно двум ячейкам.
Гиперобъём — некоторая мера (обычно мера Лебега), сопоставляемая внутренности «гипертел» (тел в многомерном пространстве), обобщение трёхмерного объёма.
Многоугольник Петри для правильного многогранника в размерности n — это пространственный многоугольник, такой что любые (n-1) последовательных ребра (но не n) принадлежат одной (n-1)-мерной грани.
Трубчатая окрестность подмногообразия в многообразии — это открытое множество, окружающее подмногообразие и локально устроенное подобно нормальному расслоению.
В геометрии пространственный многоугольник — это многоугольник, вершины которого не компланарны. Пространственные многоугольники должны иметь по меньшей мере 4 вершины. Внутренняя поверхность таких многоугольников однозначно не определяется.
Касание — свойство двух линий или линии и поверхности иметь в некоторой точке общую касательную прямую или свойство двух поверхностей иметь в некоторой точке общую касательную плоскость.
В геометрии
сферический многогранник или сферическая мозаика — это тa мозаика на сфере, в которой поверхность разделена большими дугами на ограниченные области, называемые сферическими многоугольниками. Большая часть теории симметричных многогранников использует сферические многогранники.
В геометрии треугольная призма — это призма с тремя боковыми гранями. Этот многогранник имеет в качестве граней треугольное основание, его копию, полученную в результате параллельного переноса и 3 грани, соединяющие соответствующие стороны. Прямая треугольная призма имеет прямоугольные боковые стороны, в противном случае призма называется косой.
Пра́вильный шестнадцатияче́йник, или просто шестнадцатияче́йник — один из правильных многоячейников в четырёхмерном пространстве. Известен также под другими названиями: гексадекахор (от др.-греч. ἕξ — «шесть», δέκα — «десять» и χώρος — «место, пространство»), четырёхмерный гиперокта́эдр (поскольку является аналогом трёхмерного октаэдра), четырёхмерный кокуб (поскольку двойственен четырёхмерному гиперкубу), четырёхмерный ортоплекс.
Подробнее: Шестнадцатиячейник