Связанные понятия
Теорема об упаковке кругов (известная также как теорема Кёбе — Андреева — Тёрстона) описывает возможные варианты касания окружностей, не имеющих общих внутренних точек. Граф пересечений (иногда называемый графом касаний) упаковки кругов — это граф, вершины которого соответствуют кругам, а рёбра — точкам касания. Если упаковка кругов осуществляется на плоскости (или, что эквивалентно, на сфере), то их граф пересечений называется графом монет. Графы монет всегда связны, просты и планарны. Теорема упаковки...
В вычислительной геометрии известна задача об определении принадлежности точки многоугольнику. На плоскости даны многоугольник и точка. Требуется решить вопрос о принадлежности точки многоугольнику.
Подробнее: Задача о принадлежности точки многоугольнику
Конфигурация прямых (или разбиение плоскости прямыми) — это разбиение плоскости, образованное набором прямых.
В геометрии гипотеза Келлера — это высказанная Отт-Генрихом Келлером гипотеза о том, что в любой мозаике в евклидовом пространстве, состоящей из однинаковых гиперкубов, найдутся два куба, соприкасающиеся грань-к-грани. Например, как показано на рисунке, в любой мозаике на плоскости из одинаковых квадратов, какие-то два квадрата должны соприкасаться ребро-к-ребру. Перрон доказал, что это верно в размерностях до 6. Однако для больших размерностей это неверно, как показали Лагарис и Шор для размерностей...
В математике конечное правило подразделения — это рекурсивный способ деления многоугольника и других двумерных фигур на всё меньшие и меньшие части. Правила подразделения в этом смысле является обобщением фракталов. Вместо повторения одного и того же узора снова и снова здесь имеются небольшие изменения на каждом шаге, что позволяет получить более богатые структуры, сохраняя при этом поддержку элегантного стиля фракталов . Правила подразделения используются в архитектуре, биологии и информатике...
Метод опорных векторов (англ. SVM, support vector machine) — набор схожих алгоритмов обучения с учителем, использующихся для задач классификации и регрессионного анализа. Принадлежит семейству линейных классификаторов и может также рассматриваться как специальный случай регуляризации по Тихонову. Особым свойством метода опорных векторов является непрерывное уменьшение эмпирической ошибки классификации и увеличение зазора, поэтому метод также известен как метод классификатора с максимальным зазором...
Разбиение многоугольника — это множество примитивных элементов (например, квадратов), которые не накладываются и объединение которых равно многоугольнику. Задача о разбиении многоугольника — это задача поиска разбиения, которое в некотором смысле минимально, например, разбиение с наименьшим числом элементов или разбиение с наименьшей суммой длин сторон.
Недезаргова плоскость — это проективная плоскость, не удовлетворяющая теореме Дезарга, другими словами, не являющаяся дезарговой. Теорема Дезарга верна во всех проективных пространств размерности, не равной 2, то есть, для всех классических проективных геометрий над полем (или телом), но Гильберт обнаружил, что некоторые проективные плоскости не удовлетворяют теореме.
В проективной геометрии
конфигурация на плоскости состоит из конечного множества точек и конечной конфигурации прямых, таких, что каждая точка инцидентна одному и тому же числу прямых и каждая прямая инцидентна одному и тому же числу точек.
Ориента́ция , в классическом случае — выбор одного класса систем координат, связанных между собой «положительно» в некотором определённом смысле.
Приближение с помощью кривых — это процесс построения кривой или математической функции, которая наилучшим образом приближается к заданным точкам с возможными ограничениями на кривую . Для построения такого приближения может использоваться либо интерполяция , где требуется точное прохождение кривой через точки, либо сглаживание, когда «сглаживающая» функция проходит через точки приближённо. Связанный раздел — регрессионный анализ, который фокусируется, главным образом, на вопросах статистического...
Диаграмма Вороного конечного множества точек S на плоскости представляет такое разбиение плоскости, при котором каждая область этого разбиения образует множество точек, более близких к одному из элементов множества S, чем к любому другому элементу множества.
Плоскость Фано — конечная проективная плоскость порядка 2, имеющая наименьшее возможное число точек и прямых (7 точек и 7 прямых), с тремя точками на каждой прямой и с тремя прямыми, проходящими через каждую точку. Названа по имени итальянского математика Джино Фано.
Теорема о четырёх вершинах утверждает, что функция кривизны простой замкнутой гладкой плоской кривой имеет по меньшей мере четыре локальных экстремума (в частности, по меньшей мере два локальных максимума и по меньшей мере два локальных минимума). Название теоремы отражает соглашение называть экстремальные точки функции кривизны вершинами.
Пучок — структура, используемая для установления отношений между локальными и глобальными данными.
Конечная геометрия — это любая геометрическая система, имеющая конечное количество точек. Например, евклидова геометрия не является конечной, так как евклидова прямая содержит неограниченное число точек, а точнее говоря, содержит ровно столько точек, сколько существует вещественных чисел. Конечная геометрия может иметь любое конечное число измерений.
Двоичное разбиение пространства (англ. binary space partitioning) — метод рекурсивного разбиения евклидова пространства в выпуклые множества и гиперплоскости. В результате объекты получают представление в виде структуры данных, называемой BSP-деревом.
Геометрический центр дискретного множества точек евклидова пространства (говоря статистическим языком — выборки) — это точка, в которой минимизируется сумма расстояний до точек множества. Геометрический центр обобщает медиану в математической статистике, которая минимизирует расстояния в одномерной выборке данных. Таким образом, геометрический центр отражает центральную тенденцию в пространствах высокой размерности. Понятие известно также по названиям 1-медиана , пространственная медиана, или точка...
Двойственность , или принцип двойственности, — принцип, по которому задачи оптимизации можно рассматривать с двух точек зрения, как прямую задачу или двойственную задачу. Решение двойственной задачи даёт нижнюю границу прямой задачи (при минимизации). Однако, в общем случае, значения целевых функций оптимальных решений прямой и двойственной задач не обязательно совпадают. Разница этих значений, если она наблюдается, называется разрывом двойственности. Для задач выпуклого программирования разрыв двойственности...
Ко́мпле́ксный ана́лиз , тео́рия фу́нкций ко́мпле́ксного переме́нного (или ко́мпле́ксной переме́нной; сокращенно — ТФКП) — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Графический метод решения задачи линейного программирования основан на геометрической интерпретации задачи линейного программирования и применяется в основном при решении задач двумерного пространства и только некоторых задач трёхмерного пространства, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трёх изобразить графически вообще невозможно.
В математике монодро́ми́ей называется явление, состоящее в преобразовании некоторого объекта при обнесении его вдоль нетривиального замкнутого пути.
Подробнее: Монодромия
В математике
абстрактный многогранник , неформально говоря, это структура, которая учитывает только комбинаторные свойства традиционных многогранников и игнорирует много других их свойств, таких как углы, длины рёбер и т. д. При этом не требуется наличие какого-либо содержащего многогранник пространства, такого как евклидово пространство. Абстрактная формулировка реализует комбинаторные свойства как частично упорядоченное множество («посет»).
В прикладной статистике метод наименьших полных квадратов (МНПК, TLS — англ. Total Least Squares) — это вид регрессии с ошибками в переменных, техника моделирования данных с помощью метода наименьших квадратов, в которой принимаются во внимание ошибки как в зависимых, так и в независимых переменных. Метод является обобщением регрессии Деминга и ортогональной регрессии и может быть применён как к линейным, так и нелинейным моделям.
Пло́щадь — численная характеристика двумерной (плоской или искривлённой) геометрической фигуры, неформально говоря, показывающая размер этой фигуры. Исторически вычисление площади называлось квадратурой. Фигура, имеющая площадь, называется квадрируемой. Конкретное значение площади для простых фигур однозначно вытекает из предъявляемых к этому понятию практически важных требований (см. ниже). Фигуры с одинаковой площадью называются равновеликими.
Обобщённый многоугольник — это структура инцидентности, предложенная Жаком Титсом в 1959 году. Обобщённые n-угольники вмещают в качестве частных случаев проективные плоскости (обобщённые треугольники, n=3) и обобщённые четырёхугольники (n=4). Многие обобщённые многоугольники получаются из групп типа Ли, но существуют некоторые экзотические обобщённые многоугольники, которые таким способом не получаются. Обобщённые многоугольники, удовлетворяющие условию, известному как свойство Муфанга, полностью...
Многоугольник видимости или область видимости для точки p на плоскости среди препятствий — это (возможно неограниченная) многоугольная область всех точек плоскости, видимых из точки p. Многоугольник видимости можно определить для видимости из отрезка или многоугольника. Многоугольники видимости полезны в робототехнике, компьютерных играх и для определения позиций объектов, например, для определеиня наилучшего расположения охраны в картинных галереях.
Теорема Крамера об алгебраических кривых даёт необходимое и достаточное условия, при которых число точек на вещественной плоскости, принадлежащие алгебраической кривой, однозначно определяют кривую в невырожденных случаях. Это число равно...
В геометрии
домино замощение области в евклидовой плоскости — это мозаика области плитками домино, образованными объединением двух единичных квадратов, соединённых по ребру. Эквивалентно это паросочетание в графе решётки, образованное помещением вершины в центр каждого квадрата области и соединением двух вершин, если два соответствующих квадрата смежны.
Задачи упаковки — это класс задач оптимизации в математике, в которых пытаются упаковать объекты в контейнеры. Цель упаковки — либо упаковать отдельный контейнер как можно плотнее, либо упаковать все объекты, использовав как можно меньше контейнеров. Многие из таких задач могут относиться к упаковке предметов в реальной жизни, вопросам складирования и транспортировки. Каждая задача упаковки имеет двойственную задачу о покрытии, в которой спрашивается, как много требуется некоторых предметов, чтобы...
Геометрия Лобачевского (или гиперболическая геометрия) — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных прямых, которая заменяется её отрицанием.
Группа орнамента (или группа плоской симметрии, или плоская кристаллографическая группа) — это математическая классификация двумерных повторяющихся узоров, основанных на симметриях. Такие узоры часто встречаются в архитектуре и декоративном искусстве. Существует 17 возможных различных групп.
Теорема Сарда — одна из теорем математического анализа, имеющих важные приложения в теории катастроф и теории динамических систем.Названа в честь американского математика Артура Сарда.
Интеграл — одно из важнейших понятий математического анализа, которое возникает при решении задач о нахождении площади под кривой, пройденного пути при неравномерном движении, массы неоднородного тела, и тому подобных, а также в задаче о восстановлении функции по её производной (неопределённый интеграл). Упрощённо интеграл можно представить как аналог суммы для бесконечного числа бесконечно малых слагаемых. В зависимости от пространства, на котором задана подынтегральная функция, интеграл может быть...
Метод главных компонент (англ. principal component analysis, PCA) — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретён Карлом Пирсоном в 1901 году. Применяется во многих областях, в том числе, в эконометрике, биоинформатике, обработке изображений, для сжатия данных, в общественных науках.
Кубический сплайн — гладкая функция, область определения которой разбита на конечное число отрезков, на каждом из которых она совпадает с некоторым кубическим многочленом (полиномом).
Вложение Татта или барицентричное вложение простого вершинно 3-связного планарного графа — вложение без пересечений с рёбрами в виде отрезков с дополнительными свойствами, что внешняя грань имеет выпуклый многоугольник в качестве границы и что каждая внутренняя вершина является геометрическим центром соседей. Если внешний многоугольник фиксирован, это условие на внутренние вершины определяет их положения однозначно как решение системы линейных уравнений. Решение уравнений даёт планарное вложение...
Задача о наименьшей окружности или задача о минимальном покрывающем круге — задача о вычислении наименьшей окружности, содержащей все заданные точки из множества на евклидовой плоскости.
Лемма регулярности Семереди — лемма из общей теории графов, утверждающая, что вершины любого достаточно большого графа можно разбить на конечное число групп таких, что почти во всех двудольных графах, соединяющих вершины из двух разных групп, рёбра распределены между вершинами почти равномерно. При этом минимальное требуемое количество групп, на которые нужно разбить множество вершин графа, может быть сколь угодно большим, но количество групп в разбиении всегда ограничено сверху.
Простая поверхность — поверхность, которую можно представить как кусок плоскости, подвергнутый непрерывным деформациям (растяжениям, сжатиям и изгибаниям). Более точно, простой поверхностью называется образ гомеоморфного отображения (то есть взаимно однозначного и взаимно непрерывного отображения) внутренности единичного квадрата. Этому определению можно дать аналитическое выражение.
Отношение инцидентности — это бинарное отношение между двумя различными типами объектов. Это включает понятия, которые можно выразить такими фразами как «точка лежит на прямой» или «прямая принадлежит плоскости». Наиболее существенное отношение инцидентности — между точкой P и прямой l, которое записывается как P I l. Если P I l, пара (P, l) называется флагом. В разговорном языке существует много выражений, описывающих отношение инцидентности (например, прямая проходит через точку, точка лежит на...
Подробнее: Инцидентность (геометрия)
Схе́ма — математическая абстракция, позволяющая связать алгебраическую геометрию, коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести геометрическую интуицию и геометрические конструкции, такие как тензорные поля, расслоения и дифференциалы, в теорию колец. Исторически теория схем возникла с целью обобщения и упрощения классической алгебраической геометрии итальянской школы XIX века, занимавшейся исследованием...
Пятиугольный паркет — в геометрии: замощение, составленное из выпуклых пятиугольников. Замощение из правильных пятиугольников в евклидовом пространстве невозможно, поскольку общий угол правильного пятиугольника равен 108° и не делит ни 180°, ни 360°. Однако, ими можно замостить гиперболическую плоскость и сферу.
Конфигурация Кремоны — Ричмонда — конфигурация из 15 прямых и 15 точек, по три точки, лежащих на каждой прямой, и через каждую точку проходят 3 прямых, при этом конфигурация не содержит треугольников. Конфигурацию изучали Кремона (Cremona 1877) и Ричмонд (Richmond 1900). Конфигурация является обобщённым четырёхугольником с параметрами (2,2). Граф Леви конфигурации — это граф Татта — Коксетера.
Интегральное исчисление — раздел математического анализа, в котором изучаются понятия интеграла, его свойства и методы вычислений.
Обобщённый четырёхугольник — это структура инцидентности, главное свойство которой — отсутствие треугольников (однако структура содержит много четырёхугольников). Обобщённый четырёхугольник является по определению полярным пространством ранга два. Обобщённые четырёхугольники являются обобщёнными многоугольниками с n = 4 и почти 2n-угольниками с n = 2. Они являются также в точности частичными геометриями pg(s,t,α) с α = 1.
Симметрия встречается не только в геометрии, но и в других областях математики. Симметрия является видом инвариантности, свойством неизменности при некоторых преобразованиях.