Связанные понятия
Слабая сходимость в функциональном анализе — вид сходимости в топологических векторных пространствах.
Дискре́тное простра́нство в общей топологии и смежных областях математики — это пространство, все точки которого изолированы друг от друга в некотором смысле.
Сигнату́ра — числовая характеристика квадратичной формы или псевдоевклидова пространства, в котором скалярное произведение задано с помощью соответствующей квадратичной формы.
Упоминания в литературе
В предыдущей главе было показано, что белок-кодирующие гены (по крайней мере в отношении мутационных замен, приводящих к изменению аминокислот в кодируемом белке) принадлежат к числу наиболее консервативных последовательностей генома. Однако уже на раннем этапе исследований в молекулярной эволюции стало понятно, что скорости эволюционирования белок-кодирующих генов могут очень сильно разниться (Wilson et al., 1977). Этот широкий разброс значений в общем объясняли существованием широкого спектра функций белка, которые по-разному ограничивают скорость эволюции соответствующих генов. В самом деле, кажется само собой разумеющимся, что огромная роль ДНК-полимеразы, сложнейшего фермента, который катализирует встраивание комплементарных матрице нуклеотидов в растущую цепь ДНК, требует значительного ограничения на скорость эволюции для соответствующей ей генной последовательности, в то время как, например, для структурного белка, чья единственная задача состоит в поддержании целостности ядерного матрикса, такого сильного ограничения не требуется.
Фундаментальное представление о том, что эволюция белок-кодирующих генов может сводиться не только к уникальным особенностям молекулярной структуры и функции белков, возникло уже на этом раннем этапе. В богатой идеями обзорной статье, опубликованной Аланом Вильсоном и коллегами в 1977 году, выдвигается гипотеза о том, что скорость эволюции генных последовательностей зависит как от уникальных функций кодируемого белка, так и от важности этого белка для выживания организма (Wilson et al., 1977). Однако в то время не было прямых способов изучения эволюционных ограничений, так что эти идеи, хоть и интригующие, тогда находились всецело в области умозрительных построений.
Концепцию преемственности в развитии науки представил в своих работах Дж. Холтон (р. в 1922 г.), выдвинувший идею «сквозных тематических структур», играющих организующую роль в эволюции научного познания. Согласно ей, новаторские научные теории, как правило, складываются на основе ранее сложившихся, признанных
фундаментальных представлений (таких, как атомистическая теория)[8].
Связанные понятия (продолжение)
Единичный отрезок — величина, принимаемая за единицу при геометрических построениях. При изображении декартовой системы координат, единичный отрезок обычно отмечается на каждой из осей.
В общей алгебре,
поле k называется совершенным если выполняется одно из следующих эквивалентных условий...
В теории категорий, представимый функтор — функтор специального типа из произвольной категории в категорию множеств. В некотором смысле, такие функторы задают представление категории в терминах множеств и функций.
Максимальным идеалом коммутативного кольца называется всякий собственный идеал кольца, не содержащийся ни в каком другом собственном идеале.
Подробнее: Максимальный идеал
Тео́рия поле́й — раздел математики, занимающийся изучением свойств полей, то есть структур, обобщающих свойства сложения, вычитания, умножения и деления чисел.
Дифференциа́л (от лат. differentia — разность, различие) в математике — линейная часть приращения дифференцируемой функции или отображения.
Теоре́ма Тоне́лли — Фуби́ни в математическом анализе, теории вероятностей и смежных дисциплинах сводит вычисление двойного интеграла к повторным.
Вну́тренность множества в общей топологии — это совокупность всех внутренних точек. Обычно обозначается Int, вероятно, от англ. Interior. Иногда внутренность множества называют ядром.
Зада́ча Не́ймана , вторая краевая задача — в дифференциальных уравнениях краевая задача с заданными граничными условиями для производной искомой функции на границе области — так называемые граничные условия второго рода. По типу области задачи Неймана можно разделить на два типа: внутренние и внешние. Названа в честь Карла Неймана.
Эллиптические уравнения — класс дифференциальных уравнений в частных производных, описывающих стационарные процессы.
Подробнее: Эллиптическое уравнение
Преобразование в математике — отображение (функция) множества в себя. Иногда (в особенности в математическом анализе и геометрии) преобразованиями называют отображения, переводящие некоторое множество в другое множество.
Как и для криволинейных интегралов, существуют два рода поверхностных интегралов.
Подробнее: Поверхностные интегралы
Категория абелевых групп (обозначается Ab) — категория, объекты которой — абелевы группы, а морфизмы — гомоморфизмы групп. Является прототипом абелевой категории., в действительности, любая малая абелева категория может быть вложена в Ab.
Эрмитова форма — естественный аналог понятия симметричной билинейной формы для комплексных векторных пространств. Для эрмитовых форм верны аналоги многих свойств симметрических форм: приведение к каноническому виду, понятие положительной определенности и критерий Сильвестра.
Область главных идеалов — это область целостности, в которой любой идеал является главным. Более общее понятие — кольцо главных идеалов, от которого не требуется целостности (однако некоторые авторы, например Бурбаки, ссылаются на кольцо главных идеалов как на целостное кольцо).
Конгруэнция — отношение эквивалентности на алгебраической системе, сохраняющееся при основных операциях. Понятие играет важную роль в универсальной алгебре: всякая конгруэнция порождает соответствующую факторсистему — разбиение исходной алгебраической системы на классы эквивалентности по отношению к конгруэнции.
Локальное поле — определённый тип полей с топологией, часто возникающих как пополнения полей.
Сфера Блоха — способ представления чистых состояний кубита в виде точек на сфере.
По́лная систе́ма коммути́рующих наблюда́емых (ПСКН) — множество перестановочных (коммутирующих) самосопряжённых операторов, описывающих квантовые наблюдаемые и определяющих обобщённый базис пространства чистых состояний квантовой системы. Это понятие впервые было предложено Дираком и является одним из основных в квантовой механике. Обобщенные собственные значения операторов ПСКН называются квантовыми числами.
Направленное множество в математике — непустое множество A с заданным на нем рефлексивным транзитивным отношением ≤ (то есть предпорядком), обладающее дополнительным свойством: у любой пары элементов из A есть верхняя грань в A.
В теории категорий множества Hom (то есть множества морфизмов между двумя объектами) позволяют определить важные функторы в категорию множеств. Эти функторы называются функторами Hom и имеют многочисленные приложения в теории категорий и других областях математики.
Подробнее: Функтор Hom
Синглетон — множество с единственным элементом. Например, множество {0} является синглетоном.
Нормальная форма Чибрарио — нормальная форма дифференциального уравнения, не разрешённого относительно производной, в окрестности простейшей особой точки. Название предложено В. И. Арнольдом в честь итальянского математика Марии Чибрарио, установившей эту нормальную форму для одного класса уравнений.
Сравнение топологий — это понятие, позволяющее «сравнивать» различные топологические структуры на одном и том же множестве. Множество всех топологий на фиксированном множестве образует частично упорядоченное множество относительно этого отношения.
Абсолютная непрерывность — в математическом анализе, свойство функций и мер, состоящее, неформально говоря, в выполнении теоремы Ньютона — Лейбница о связи между интегрированием и дифференцированием.
Функция Вигнера (функция квазивероятностного распределения Вигнера, распределение Вигнера, распределение Вейля) была введена Вигнером в 1932 году для изучения квантовых поправок к классической статистической механике. Целью было заменить волновую функцию, которая появляется в уравнении Шрёдингера на функцию распределения вероятности в фазовом пространстве. Она была независимо выведена Вейлем в 1931 году как символ матрицы плотности теории представлений в математике. Функция Вигнера применяется в...
Равноме́рная непреры́вность в математическом и функциональном анализе — это свойство функции быть одинаково непрерывной во всех точках области определения.
Операторная алгебра — алгебра операторов, действующих на топологическом векторном пространстве. Операторные алгебры активно применяются в теории представлений и в дифференциальной геометрии, в квантовой механике и в квантовой статистической физике, в квантовой теории поля и в современной классической механике.
Теорема о четырёх вершинах утверждает, что функция кривизны простой замкнутой гладкой плоской кривой имеет по меньшей мере четыре локальных экстремума (в частности, по меньшей мере два локальных максимума и по меньшей мере два локальных минимума). Название теоремы отражает соглашение называть экстремальные точки функции кривизны вершинами.
В коммутативной алгебре, дробный идеал — это обобщение понятия идеала целостного кольца, особенно полезное при изучении дедекиндовых колец. Условно говоря, дробные идеалы — это идеалы со знаменателями. В случаях, когда одновременно обсуждаются дробные и обычные идеалы, последние называют целыми идеалами.
Гипотезы Вейля — математические гипотезы о локальных дзета-функциях проективных многообразий над конечными полями.
В математике константой
Чигера (также числом Чигера или изопериметрическим числом) графа называется числовая характеристика графа, отражающая, есть ли у графа «узкое место» или нет. Константа Чигера как способ измерения наличия «узкого места» представляет интерес во многих областях, например, для создания сильно связанных компьютерных сетей, для тасования карт и в топологии малых размерностей (в частности, при изучении гиперболических 3-мерных многообразий). Названа в честь математика Джефа Чигера...
Группы
сферической симметрии также называются точечными группами в трёхмерном пространстве, однако эта статья рассматривает только конечные симметрии.
Степень трансцендентности расширения поля в общей алгебре — это величина, которая даёт грубую оценку «масштаба» расширения. Другими словами, чем больше степень трансцендентности, тем больше расширенное поле содержит трансцендентных (то есть, неалгебраических по отношению к исходному полю) элементов.
Полурешётка (англ. semilattice, до 1960-х годов также использовался термин полуструктура) в общей алгебре — полугруппа, бинарная операция в которой коммутативна и идемпотентна.
Метод простой итерации — один из простейших численных методов решения уравнений. Метод основан на принципе сжимающего отображения, который применительно к численным методам в общем виде также может называться методом простой итерации или методом последовательных приближений. В частности, для систем линейных алгебраических уравнений существует аналогичный метод итерации.
Лемма о вложенных отрезках , или принцип вложенных отрезков Коши — Кантора, или принцип непрерывности Кантора — фундаментальное утверждение в математическом анализе, связанное с полнотой поля вещественных чисел.
Ма́тричная меха́ника — математический формализм квантовой механики, разработанный Вернером Гейзенбергом, Максом Борном и Паскуалем Иорданом в 1925 году.
Универсальная тригонометрическая подстановка , в англоязычной литературе называемая в честь Карла Вейерштрасса подстановкой Вейерштрасса, применяется в интегрировании для нахождения первообразных, определённых и неопределённых интегралов от рациональных функций от тригонометрических функций. Без потери общности можно считать в данном случае такие функции рациональными функциями от синуса и косинуса. Подстановка использует тангенс половинного угла.