Связанные понятия
Теория функций вещественной переменной (или теория функций действительного переменного) — раздел анализа, нацеленный на углублённое изучение двух понятий «классического» математического анализа: производной и интеграла.
Математи́ческий ана́лиз (классический математический анализ) — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
Анализ как современный раздел математики — значительная часть математики, исторически выросшая из классического математического анализа, и охватывающая, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный...
Теория приближений — раздел математики, изучающий вопрос о возможности приближенного представления одних математических объектов другими, как правило более простой природы, а также вопросы об оценках вносимой при этом погрешности. Значительная часть теории приближения относится к приближению одних функций другими, однако есть и результаты, относящиеся к абстрактным векторным или топологическим пространствам.
История тригонометрии как науки о соотношениях между углами и сторонами треугольника и других геометрических фигур охватывает более двух тысячелетий. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
Интегральное исчисление — раздел математического анализа, в котором изучаются понятия интеграла, его свойства и методы вычислений.
Ко́мпле́ксный ана́лиз , тео́рия фу́нкций ко́мпле́ксного переме́нного (или ко́мпле́ксной переме́нной; сокращенно — ТФКП) — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Дифференциальное исчисление — раздел математического анализа, в котором изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Формирование дифференциального исчисления связано с именами Исаака Ньютона и Готфрида Лейбница. Именно они чётко сформировали основные положения и указали на взаимообратный характер дифференцирования и интегрирования. Создание дифференциального исчисления (вместе с интегральным) открыло новую эпоху в развитии математики. С этим связаны...
Теория потенциала — раздел математики и математической физики, посвящённый изучению свойств дифференциальных уравнений в частных производных в областях с достаточно гладкой границей посредством введения специальных видов интегралов, зависящих от определённых параметров, называемых потенциалами.
Гиперболические уравнения — класс дифференциальных уравнений в частных производных. Характеризуются тем, что задача Коши с начальными данными, заданными на нехарактеристической поверхности, однозначно разрешима.
Интегра́льное уравне́ние — функциональное уравнение, содержащее интегральное преобразование над неизвестной функцией. Если интегральное уравнение содержит также производные от неизвестной функции, то говорят об интегро-дифференциальном уравнении.
Гармони́ческий ана́лиз (или фурье́-ана́лиз) — раздел математического анализа, в котором изучаются свойства функций с помощью представления их в виде рядов или интегралов Фурье. Также метод решения задач с помощью представления функций в виде рядов или интегралов Фурье.
Квазианалити́ческие фу́нкции в математическом анализе — класс функций, которые, нестрого говоря, можно полностью реконструировать по их значениям на небольшом участке (например, на границе области). Такое свойство значительно облегчает решение дифференциальных уравнений и исследование других задач анализа. Поскольку это свойство выполняется для аналитических функций (см. Комплексный анализ), то класс квазианалитических функций содержит класс обычных аналитических функций и может рассматриваться как...
Подробнее: Квазианалитическая функция
Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения, системы линейных уравнений, среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают...
Ве́кторное исчисле́ние — раздел математики, в котором изучаются свойства операций над векторами. В связи с разнообразием особенностей векторов, зависящих от пространства, в котором они исследуются, векторное исчисление подразделяется на...
Спектральная теория — общий термин в математике, под которым понимаются теории, расширяющие понятия собственной функции и собственного значения с квадратных матриц на более широкие классы линейных операторов в самых различных пространствах.
Функциональный анализ — раздел анализа, в котором изучаются бесконечномерные топологические векторные пространства и их отображения.
Теория групп — раздел общей алгебры, изучающий алгебраические структуры, называемые группами, и их свойства. Группа является центральным понятием в общей алгебре, так как многие важные алгебраические структуры, такие как кольца, поля, векторные пространства, являются группами с расширенным набором операций и аксиом. Группы возникают во всех областях математики, и методы теории групп оказывают сильное влияние на многие разделы алгебры. В процессе развития теории групп построен мощный инструментарий...
Задача Дирихле — вид задач, появляющийся при решении дифференциальных уравнений в частных производных второго порядка. Названа в честь Иоганна Дирихле.
Выпуклая геометрия — ветвь геометрии, изучающая выпуклые множества, в основном, в евклидовом пространстве. Выпуклые множества возникают естественным образом во многих областях, в том числе в вычислительной геометрии, выпуклом анализе, комбинаторной геометрии, функциональном анализе, геометрии чисел, интегральной геометрии, линейном программировании, теории вероятностей.
Ве́кторный ана́лиз — раздел математики, распространяющий методы математического анализа на векторы, как правило в двух- или трёхмерном пространстве.
Преде́л — одно из основных понятий математического анализа. Различают предел последовательности и предел функции.
Интервальная арифметика — математическая структура, которая для вещественных интервалов определяет операции, аналогичные обычным арифметическим. Эту область математики называют также интервальным анализом или интервальными вычислениями. Данная математическая модель удобна для исследования различных прикладных объектов...
Многомерный
анализ (также известный как многомерное или многовариантное исчисление) является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.
Спор о струне , спор о колеблющейся струне, спор о звучащей струне — научная дискуссия, развернувшаяся в XVIII веке между крупнейшими учёными того времени вокруг изучения колебаний струны. В спор оказались вовлечены Д’Аламбер, Эйлер, Д. Бернулли, Лагранж. Дискуссия касалась определения понятия функции и оказала решающее влияние на множество разделов математики: теорию дифференциальных уравнений в частных производных, математический анализ и теорию функций вещественного переменного, теорию тригонометрических...
Теория представлений — раздел математики, изучающий абстрактные алгебраические структуры с помощью представления их элементов в виде линейных преобразований векторных пространств. В сущности, представление делает абстрактные алгебраические объекты более конкретными, описывая их элементы матрицами, а операции сложения и умножения этих объектов — сложением и умножением матриц. Среди объектов, поддающихся такому описанию, находятся группы, ассоциативные алгебры и алгебры Ли. Наиболее известной (и, исторически...
Параболические уравнения — класс дифференциальных уравнений в частных производных. Один из видов уравнений, описывающих нестационарные процессы.
Подробнее: Параболическое уравнение
Эргодичность — специальное свойство некоторых динамических систем, состоящее в том, что в процессе эволюции почти каждое состояние с определённой вероятностью проходит вблизи любого другого состояния системы.
Интеграл — одно из важнейших понятий математического анализа, которое возникает при решении задач о нахождении площади под кривой, пройденного пути при неравномерном движении, массы неоднородного тела, и тому подобных, а также в задаче о восстановлении функции по её производной (неопределённый интеграл). Упрощённо интеграл можно представить как аналог суммы для бесконечного числа бесконечно малых слагаемых. В зависимости от пространства, на котором задана подынтегральная функция, интеграл может быть...
Краевая задача (граничная задача) — задача о нахождении решения заданного дифференциального уравнения (системы дифференциальных уравнений), удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
Разностная схема — это конечная система алгебраических уравнений, поставленная в соответствие какой-либо дифференциальной задаче, содержащей дифференциальное уравнение и дополнительные условия (например краевые условия и/или начальное распределение). Таким образом, разностные схемы применяются для сведения дифференциальной задачи, имеющей континуальный характер, к конечной системе уравнений, численное решение которых принципиально возможно на вычислительных машинах. Алгебраические уравнения, поставленные...
Теория чисел , или высшая арифметика, — раздел математики, первоначально изучавший свойства целых чисел. В современной теории чисел рассматриваются и другие типы чисел — например, алгебраические и трансцендентные, а также функции различного происхождения, которые связаны с арифметикой целых чисел и их обобщений.
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Комплексный логарифм — аналитическая функция, получаемая распространением вещественного логарифма на всю комплексную плоскость (кроме нуля). Существует несколько эквивалентных способов такого распространения. Данная функция имеет широкое применение в комплексном анализе. В отличие от вещественного случая, функция комплексного логарифма многозначна.
Определённый интеграл — аддитивный монотонный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).
История комбинаторики освещает развитие комбинаторики — раздела конечной математики, который исследует в основном различные способы выборки заданного числа m элементов из заданного конечного множества: размещения, сочетания, перестановки, а также перечисление и смежные проблемы. Начав с анализа головоломок и азартных игр, комбинаторика оказалась исключительно полезной для решения практических задач почти во всех разделах математики. Кроме того, комбинаторные методы оказались полезными в статистике...
Конечная разность — математический термин, широко применяющийся в методах вычисления при интерполировании.
Подробнее: Конечные разности
Эрлангенская программа — выступление 23-летнего немецкого математика Феликса Клейна в Эрлангенском университете (октябрь 1872 года), в котором он предложил общий алгебраический подход к различным геометрическим теориям и наметил перспективный путь их развития. Доклад был связан с процедурой утверждения Клейна в должности профессора и был опубликован в том же году. Первый русский перевод появился в 1895 году.
Алгебраическая комбинаторика — это область математики, использующая методы общей алгебры, в особенности теории групп и теории представлений, в различных комбинаторных контекстах и, наоборот, применяющая комбинаторные техники к задачам в алгебре.
Тео́рия вероя́тностей — раздел математики, изучающий случайные события, случайные величины, их свойства и операции над ними.
Данная статья представляет собой обзор основных событий и тенденций в истории математики с древнейших времён до наших дней.
Подробнее: История математики
Функциональное уравнение — уравнение, выражающее связь между значением функции в одной точке с её значениями в других точках. Многие свойства функций можно определить, исследуя функциональные уравнения, которым эти функции удовлетворяют. Термин «функциональное уравнение» обычно используется для уравнений, несводимых простыми способами к алгебраическим уравнениям. Эта несводимость чаще всего обусловлена тем, что аргументами неизвестной функции в уравнении являются не сами независимые переменные, а...
Теория комбинаторных схем — это часть комбинаторики (раздела математики), рассматривающая существование, построение и свойства семейств конечных множеств, структура которых удовлетворяет обобщённым концепциям равновесия и/или симметрии. Эти концепции не определены точно, так что объекты широкого диапазона могут пониматься как комбинаторные схемы. Так, в одном случае комбинаторные схемы могут представлять собой пересечения множеств чисел, как в блок-схемах, а в другом случае могут отражать расположение...
Подробнее: Комбинаторная схема