Понятия со словосочетанием «следующий пример»
Связанные понятия
Мнимый парадокс — ложный парадокс, возникающий из-за неверного хода рассуждений.
Дизъюнкти́вная норма́льная фо́рма (ДНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид дизъюнкции конъюнкций литералов. Любая булева формула может быть приведена к ДНФ. Для этого можно использовать закон двойного отрицания, закон де Моргана, закон дистрибутивности. Дизъюнктивная нормальная форма удобна для автоматического доказательства теорем.
Логика высказываний, или пропозициональная логика (лат. propositio — «высказывание»), или исчисление высказываний — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
Термин
рекурсивная функция в теории вычислимости используется для обозначения трёх классов функций...
Кореку́рсия — в теории категорий и информатике тип операции, дуальный к рекурсии. Обычно корекурсия используется (совместно с механизмом ленивых вычислений) для генерации бесконечных структур данных.
В логике логи́ческими опера́циями называют действия, вследствие которых порождаются новые понятия, с использованием уже существующих. В более узком смысле, понятие логической операции используется в математической логике и программировании.
Подробнее: Логическая операция
Метало́гика — изучение метатеории логики. В то время, как логика представляет собой исследование способов применения логических систем для рассуждения, доказательств и опровержений, металогика исследует свойства самих логических систем.
Сопоставление с образцом (англ. Pattern matching) — метод анализа и обработки структур данных в языках программирования, основанный на выполнении определённых инструкций в зависимости от совпадения исследуемого значения с тем или иным образцом, в качестве которого может использоваться константа, предикат, тип данных или иная поддерживаемая языком конструкция.
Ра́венство (отношение равенства) в математике — бинарное отношение, наиболее логически сильная разновидность отношений эквивалентности.
Выска́зывание в математической логике — предложение, выражающее суждение. Если суждение, составляющее содержание (смысл) некоторого высказывания, истинно, то и о данном высказывании говорят, что оно истинно. Сходным образом ложным называют такое высказывание, которое является выражением ложного суждения. Истинность и ложность называются логическими, или истинностными, значениями высказываний.Высказывание должно быть повествовательным предложением, и противопоставляются повелительным, вопросительным...
Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов. Конъюнктивная нормальная форма удобна для автоматического доказательства теорем. Любая булева формула может быть приведена к КНФ. Для этого можно использовать: закон двойного отрицания, закон де Моргана, дистрибутивность.
Описательная статистика или дескриптивная статистика (англ. descriptive statistics) занимается обработкой эмпирических данных, их систематизацией, наглядным представлением в форме графиков и таблиц, а также их количественным описанием посредством основных статистических показателей.
Вычисле́ние — математическое преобразование, позволяющее преобразовывать входящий поток информации в выходной, с отличной от первого структурой. Если смотреть с точки зрения теории информации, вычисление — это получение из входных данных нового знания.
Литерал (англ. literal ) — запись в исходном коде компьютерной программы, представляющая собой фиксированное значение. Литералами также называют представление значения некоторого типа данных.
Парадокс Скулема — противоречивое рассуждение, описанное впервые норвежским математиком Туральфом Скулемом, связанное с использованием теоремы Лёвенгейма — Скулема для аксиоматической теории множеств.
Машина вывода — программа, которая выполняет логический вывод из предварительно построенной базы фактов и правил в соответствии с законами формальной логики.
В программировании,
аргумент по умолчанию является аргументом функции, который при вызове необязательно указывать.
Предика́т (лат. praedicatum «заявленное, упомянутое, сказанное») — это утверждение, высказанное о субъекте. Субъектом высказывания называется то, о чём делается утверждение.
Ля́мбда-исчисле́ние (λ-исчисление) — формальная система, разработанная американским математиком Алонзо Чёрчем, для формализации и анализа понятия вычислимости.
Хорновский дизъюнкт — дизъюнктивный одночлен с не более чем одним положительным литералом. Изучены Альфредом Хорном (англ. Alfred Horn) в 1951 году в связи с их важной ролью в теории моделей и универсальной алгебре. Впоследствии стали основой для языка логического программирования Пролог, в котором программа являются непосредственно набором хорновских дизъюнктов, а также нашли важные приложения в конструктивной логике и теории сложности вычислений.
Программа Гильберта в математике была сформулирована немецким математиком Давидом Гильбертом в начале 20-го века. Гильберт предположил, что согласованность более сложных систем, таких как реальный анализ, может быть доказана в терминах более простых систем. В конечном счете, непротиворечивость всей математики может быть сведена к простой арифметике.
Пра́вило — требование для исполнения неких условий (норма на поведение) всеми участниками какого-либо действия (игры, правописания, судебного процесса, организации, учреждения), за выполнение которого предусмотрено поощрение, а за невыполнение — наказание.
Конъю́нкция (от лат. conjunctio — «союз, связь») — логическая операция, по смыслу максимально приближенная к союзу «и». Синонимы: логи́ческое «И», логи́ческое умноже́ние, иногда просто «И».
Заключе́ние — логическая противоположность основанию в логическом выводе. Суждение, считающееся истинным в том случае, когда истинными признаются его предпосылки.В быту понятие используется примерно с тем же значением, обозначая, в широком смысле, любой предположительно правильный вывод или следствие из чего-нибудь, как, например, во фразе «Я пришел к заключению, что вы были правы» или в выражении «заключение экспертов».
Синтакси́ческая омоними́я — это возможность построить несколько синтаксических структур на основе одной и той же последовательности языковых знаков. Выделяются следующие типы синтаксической омонимии: неоднозначность установления синтаксических связей (стрелочная омонимия), омонимия субъектной и объектной связей (разметочная омонимия) и омонимия множества различных синтаксических групп (конституентная омонимия).
Ссылочная прозрачность и ссылочная непрозрачность — это свойства частей компьютерных программ. Выражение называется ссылочно прозрачным, если его можно заменить соответствующим значением без изменения поведения программы. В результате вычисления ссылочно прозрачной функции дает одно и то же значение для одних и тех же аргументов. Такие функции называются чистыми функциями.
Фу́нкция вы́сшего поря́дка — в программировании функция, принимающая в качестве аргументов другие функции или возвращающая другую функцию в качестве результата. Основная идея состоит в том, что функции имеют тот же статус, что и другие объекты данных. Использование функций высшего порядка приводит к абстрактным и компактным программам, принимая во внимание сложность производимых ими вычислений.
Пара́метр в программировании — принятый функцией аргумент. Термин «аргумент» подразумевает, что конкретно и какой конкретной функции было передано, а параметр — в каком качестве функция применила это принятое. То есть вызывающий код передает аргумент в параметр, который определен в члене спецификации функции.
Парадокс Ябло (англ. Yablo's paradox) — это логический парадокс, похожий на парадокс лжеца. Был опубликован Стефаном Ябло в 1993 году. Важность этого парадокса в том, что, хотя он похож на парадокс лжеца и разные его варианты, этот парадокс, по крайней мере на первый взгляд, избегает самореференции. Правда, многие считают, что это только на первый взгляд, и самореференция «спрятана» внутри парадокса.
Перечислительная комбинаторика (или исчисляющая комбинаторика) — раздел комбинаторики, который рассматривает задачи о перечислении, то есть подсчёте количества, или непосредственного построения и перебора, различных конфигураций (например, перестановок), образуемых элементами конечных множеств, на которые могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п.
Идиома программирования — устойчивый способ выражения некоторой составной конструкции в одном или нескольких языках программирования. Идиома является шаблоном решения задачи, записи алгоритма или структуры данных путём комбинирования встроенных элементов языка.
Ме́тод синтакси́ческих шабло́нов — техника автоматического преобразования формализованных структур знаний, хранимых в базе данных, в тексты естественного языка, основана на концепции падежной грамматики Чарльза Филлмора.
Пресуппози́ция (от лат. prae — впереди, перед и suppositio — подкладывание, заклад) (также презу́мпция) в лингвистической семантике — необходимый семантический компонент, обеспечивающий наличие смысла в утверждении.
Бу́лева фу́нкция (или логи́ческая функция, или функция а́лгебры ло́гики) от n аргументов — в дискретной математике — отображение Bn → B, где B = {0,1} — булево множество. Элементы булева множества {1, 0} обычно интерпретируют как логические значения «истинно» и «ложно», хотя в общем случае они рассматриваются как формальные символы, не несущие определённого смысла. Неотрицательное целое число n называют арностью или местностью функции, в случае n = 0 булева функция превращается в булеву константу...
Логическая ошибка — в логике, философии и прочих науках, изучающих познание, ошибка, связанная с нарушением логической правильности умозаключений. Ошибочность обусловлена каким-либо логическим недочётом в доказательстве, что делает доказательство в целом неверным.
Логика Хоара (англ. Hoare logic, также Floyd—Hoare logic, или Hoare rules) — формальная система с набором логических правил, предназначенных для доказательства корректности компьютерных программ. Была предложена в 1969 году английским учёным в области информатики и математической логики Хоаром, позже развита самим Хоаром и другими исследователями. Первоначальная идея была предложена в работе Флойда, который опубликовал похожую систему в применении к блок-схемам (англ. flowchart).
Корефере́нтность или референциональное тождество — отношение между именами — компонентами высказывания, в котором имена ссылаются на один и тот же объект (ситуацию) внеязыковой действительности (референт).
В информатике неоднозначной грамматикой называется формальная грамматика, которая может породить некоторую строку более чем одним способом (то есть для строки есть более одного дерева разбора). Язык называется существенно неоднозначным, если он может быть порождён только неоднозначными грамматиками.
Подробнее: Неоднозначная грамматика
Теория доказательств — это раздел математической логики, представляющий доказательства в виде формальных математических объектов, осуществляя их анализ с помощью математических методов. Доказательства обычно представляются в виде индуктивно определённых структур данных, таких как списки и деревья, созданных в соответствии с аксиомами и правилами вывода формальных систем. Таким образом, теория доказательств является синтаксической, в отличие от семантической теории моделей. Вместе с теорией моделей...
Те́зис Чёрча — Тью́ринга — это гипотеза, постулирующая эквивалентность между интуитивным понятием алгоритмической вычислимости и строго формализованными понятиями частично рекурсивной функции и функции, вычислимой на машине Тьюринга. В связи с интуитивностью исходного понятия алгоритмической вычислимости, данный тезис носит характер суждения об этом понятии и его невозможно строго доказать или опровергнуть. Перед точным определением вычислимой функции математики часто использовали неофициальный термин...
В математике и программировании взаимная рекурсия — это вид рекурсии, когда два математических или программных объекта, таких как функции или типы данных, определяются в терминах друг друга. Взаимная рекурсия широко распространена в функциональном программировании и в некоторых проблемных областях, таких как метод рекурсивного спуска, где типы данных естественным образом взаимно рекурсивны, что не распространено широко в других областях.
Реляционная модель данных (РМД) — логическая модель данных, прикладная теория построения баз данных, которая является приложением к задачам обработки данных таких разделов математики, как теория множеств и логика первого порядка.
Абстра́ктный ме́тод (или чистый виртуальный метод (pure virtual method — часто неверно переводится как чИсто виртуальный метод)) — в объектно-ориентированном программировании, метод класса, реализация для которого отсутствует. Класс, содержащий абстрактные методы, также принято называть абстрактным (там же и пример). Абстрактные методы зачастую путают с виртуальными. Абстрактный метод подлежит определению в классах-наследниках, поэтому его можно отнести к виртуальным, но не каждый виртуальный метод...
«Тогда́ и то́лько тогда́» — логическая связка эквиваленции между утверждениями, применяемая в логике, математике, философии. Чтобы быть эквиваленцией, связка должна быть идентична стандартному материальному условному высказыванию («только тогда» эквивалентно «если … то»), соединённому со своей противоположностью, откуда и название связки. В результате истинность одного утверждения требует такой же истинности другого, то есть либо оба они истинны, либо оба ложны. Можно спорить о том, передаёт ли выражение...