Понятия со словосочетанием «простое число»
Эта страница содержит
список первых 500 простых чисел, а также списки некоторых специальных типов простых чисел.
Безопасное простое число — это простое число вида 2p + 1, где p также простое (и наоборот, p есть простое число Софи Жермен). Несколько первых безопасных простых чисел...
Целые
числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1.
В теории чисел,
вероятно простым числом (англ. probably prime, PRP) называется целое число, которое удовлетворяет некоторым условиям, которым удовлетворяют все простые числа. Различные типы вероятно простых имеют различные условия. Поскольку вероятно простое может быть составным (такие числа называются псевдопростыми), условие выбирается так, чтобы сделать эти исключения редкими.
Последовательность без простых чисел — это последовательность целых чисел, не содержащая каких-либо простых чисел. Как правило, при этом предполагается, что последовательность задана той же рекуррентной формулой, что и для чисел Фибоначчи, но с другими начальными условиями, и все члены последовательности должны быть cоставными числами, не имеющими общего для всех членов делителя. Таким образом, последовательность этих чисел определяется путём выбора двух составных чисел a1 и a2, для которых наибольший...
В теории чисел регулярное простое число — всякое простое число р, для которого число классов идеалов кругового поля не делится на р. Все остальные простые нечётные числа называются иррегулярными.
Незаконное простое число — простое число, представляющее охраняемую законом информацию, которую запрещено хранить и распространять. Одно из первых незаконных простых чисел было обнародовано в 2001 году. При правильной интерпретации оно представляет собой компьютерную программу, которая обходит схемы защиты авторских прав. Распространение таких программ в США незаконно согласно DMCA, который выводит за пределы правового поля не только непосредственное нарушение авторских прав путём копирования, но...
Связанные понятия
Составно́е число́ (в XIX веке также сложное число) — натуральное число, бо́льшее 1, не являющееся простым. Каждое составное число является произведением двух или более натуральных чисел, бо́льших 1.
Псевдопростое число — натуральное число, обладающее некоторыми свойствами простых чисел, являясь тем не менее составным. В зависимости от рассматриваемых свойств существует несколько различных типов псевдопростых чисел.
Суперпростые числа (также известны как простые числа высшего порядка) — это подмножество простых чисел, стоящих в списке простых чисел на позициях, являющихся простыми числами (то есть это 2-е, 3-е, 5-е, 7-е, 11-е, 13-е, 17-е и т.д. по счёту простые числа).
Подробнее: Суперпростое число
Праймориал (англ. Primorial, иногда именуется также «примориал») — в теории чисел функция над рядом натуральных чисел, схожая с функцией факториала, с разницей в том, что праймориал является последовательным произведением простых чисел, меньших или равных данному, в то время как факториал является последовательным произведением всех натуральных чисел, меньших или равных данному.
Гиперко́мпле́ксные числа — различные расширения вещественных чисел, такие как комплексные числа, кватернионы и пр.
Подробнее: Гиперкомплексное число
Лемма (греч. λημμα — предположение) — доказанное утверждение, полезное не само по себе, а для доказательства других утверждений.
Теорема Хольмгрена — теорема о единственности решения задачи Коши для дифференциального уравнения с частными производными в случае аналитичности коэффициентов дифференциального оператора.
Теоре́ма Лебе́га о мажори́руемой сходи́мости в функциональном анализе, теории вероятностей и смежных дисциплинах — это теорема, утверждающая, что если сходящаяся почти всюду последовательность измеримых функций может быть ограничена по модулю сверху интегрируемой функцией, то все члены последовательности, а также предельная функция тоже интегрируемы. Более того, интеграл последовательности сходится к интегралу её предела.
Восьмая проблема Гильберта — одна из проблем, поставленных Давидом Гильбертом в его докладе на II Международном Конгрессе математиков в Париже в 1900 году. Восьмая проблема Гильберта состоит из двух задач, относящихся к теории простых чисел. Это гипотеза Римана и проблема Гольдбаха.
Дели́мость — одно из основных понятий арифметики и теории чисел, связанное с операцией деления. С точки зрения теории множеств, делимость целых чисел является отношением, определённым на множестве целых чисел.
Трансценде́нтное число́ (от лат. transcendere — переходить, превосходить) — это вещественное или комплексное число, не являющееся алгебраическим — иными словами, число, которое не может быть корнем многочлена с целочисленными коэффициентами (не равного тождественно нулю). Можно также заменить в определении многочлены с целочисленными коэффициентами на многочлены с рациональными коэффициентами, поскольку корни у них одни и те же.
Связное пространство — непустое топологическое пространство, которое невозможно разбить на два непустых непересекающихся открытых подмножества.
Факторизация целых чисел для больших чисел является задачей большой сложности. Не существует никакого известного способа, чтобы решить эту задачу быстро. Её сложность лежит в основе некоторых алгоритмов шифрования с открытым ключом, таких как RSA.
Полный квадрат или квадратное число — число, являющееся квадратом некоторого целого числа. Иными словами, квадратом является целое число, квадратный корень которого тоже целый.
В математике, симметрической алгеброй S(V) (также обозначается Sym(V)) векторного пространства V над полем K называется свободная коммутативная ассоциативная K-алгебра с единицей, содержащая V.
Подробнее: Симметрическая алгебра
Важнейшими с точки зрения приложений характеристических функций к выводу асимптотических формул теории вероятностей являются две предельные теоремы — прямая и обратная. Эти теоремы устанавливают, что соответствие, существующее между функциями распределения и характеристическими функциями, не только взаимно однозначно, но и непрерывно.
Подробнее: Прямая и обратная предельная теорема
Функция Геделя — функция, применяющаяся в теории алгоритмов для облегчения нумерации множеств натуральных чисел.
Теорема Витта — теорема о свойствах конечномерных ортогональных пространств над полями произвольного вида. Она утверждает, что любая изометрия между двумя подпространствами конечномерного ортогонального векторного пространства может быть продолжена на все пространство.
Теорема Пикара — теорема о существовании и единственности решения обыкновенного дифференциального уравнения первого порядка.
В математике,
несократимая дробь (также приведённая дробь) — дробь, которую невозможно сократить. Иначе говоря, значение несократимой дроби не допускает более простое представление в виде дроби. В случае обыкновенных дробей «более простое» означает: с меньшим (но натуральным) знаменателем.
В математике (общей алгебре) многочлен от нескольких переменных над полем называется гармоническим, если лапласиан этого многочлена равен нулю.
Подробнее: Гармонический многочлен
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Фундаментальная последовательность, или сходящаяся в себе последовательность, или последовательность Коши — последовательность точек метрического пространства такая, что для любого ненулевого заданного расстояния существует элемент последовательности, начиная с которого все элементы последовательности находятся друг от друга на расстоянии менее, чем заданное.
Недоста́точное число́ — натуральное число, сумма собственных делителей которого меньше самого числа.
Подробнее: Недостаточные числа
Одиозное число — неотрицательное целое число с нечётным весом Хэмминга при записи в двоичной системе счисления (то есть с нечётным числом единиц в двоичной записи).
Метрика Хаусдорфа есть естественная метрика, определённая на множестве всех непустых компактных подмножеств метрического пространства. Таким образом, метрика Хаусдорфа превращает множество всех непустых компактных подмножеств метрического пространства в метрическое пространство.
В теории вероятностей случайная величина имеет дискретное равномерное распределение, если она принимает конечное число значений с равными вероятностями.
Подробнее: Дискретное равномерное распределение
Норма́льное простра́нство — топологическое пространство, удовлетворяющее аксиомам отделимости T1, T4, то есть такое топологическое пространство, в котором одноточечные множества замкнуты и любые два непересекающихся замкнутых множества отделимы окрестностями (то есть содержатся в непересекающихся открытых множествах).
Проста́я фу́нкция в математике — это измеримая функция, заданная на некотором измеримом пространстве и принимающая конечное число значений.
Теорема о монотонной сходимости (теорема Беппо́ Ле́ви) — это теорема из теории интегрирования Лебега, имеющая фундаментальное значение для функционального анализа и теории вероятностей, где служит инструментом для доказательства многих положений. Даёт одно из условий при которых можно переходить к пределу под знаком интеграла Лебега, теорема позволяет доказать существование суммируемого предела у некоторых ограниченных функциональных последовательностей.
Полунорма или преднорма — обобщение понятия норма; в отличие от последней, полунорма может равняться нулю на ненулевых элементах пространства.
Злое число — целое неотрицательное число с чётным весом Хэмминга при записи в двоичной системе счисления (то есть с чётным числом единиц в двоичной записи).
Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций...