Связанные понятия
Основна́я теоре́ма а́лгебры — утверждение о том, что поле комплексных чисел алгебраически замкнуто, то есть всякий отличный от константы многочлен (от одной переменной) с комплексными коэффициентами имеет, по крайней мере, один корень на поле комплексных чисел. Утверждение справедливо и для многочленов с вещественными коэффициентами, так как всякое вещественное число является комплексным с нулевой мнимой частью.
Преде́л — одно из основных понятий математического анализа. Различают предел последовательности и предел функции.
Математическая константа или математическая постоянная — величина, значение которой не меняется; в этом она противоположна переменной. В отличие от физических постоянных, математические постоянные определены независимо от каких бы то ни было физических измерений.
Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций...
Дели́мость — одно из основных понятий арифметики и теории чисел, связанное с операцией деления. С точки зрения теории множеств, делимость целых чисел является отношением, определённым на множестве целых чисел.
Определённый интеграл — аддитивный монотонный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).
Преде́л фу́нкции (предельное значение функции) в заданной точке, предельной для области определения функции, — такая величина, к которой стремится значение рассматриваемой функции при стремлении её аргумента к данной точке.
Факторкольцо ́ — общеалгебраическая конструкция, позволяющая распространить на случай колец конструкцию факторгруппы. Любое кольцо является группой по сложению, поэтому можно рассмотреть её подгруппу и взять факторгруппу. Однако для того, чтобы на этой факторгруппе можно было корректно определить умножение, необходимо, чтобы исходная подгруппа была замкнута относительно умножения на произвольные элементы кольца, то есть являлась идеалом.
Алгебра над полем — это векторное пространство, снабженное билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом, причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом, которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом.
Измери́мые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами множеств, в частности измеримыми пространствами.
Подробнее: Измеримая функция
Кольцо многочленов — кольцо, образованное многочленами от одной или нескольких переменных с коэффициентами из другого кольца. Изучение свойств колец многочленов оказало большое влияние на многие области современной математики; можно привести примеры теоремы Гильберта о базисе, конструкции поля разложения и изучения свойств линейных операторов.
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Дедеки́ндово сече́ние (или у́зкая щель) — один из способов построения вещественных чисел из рациональных.
Квадратичная форма — функция на векторном пространстве, задаваемая однородным многочленом второй степени от координат вектора.
По́ле в общей алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления (кроме деления на нуль), причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Хотя названия операций поля взяты из арифметики, следует иметь в виду, что элементы поля не обязательно являются числами, и определения операций могут быть далеки от арифметических.
Математическая индукция — метод математического доказательства, который используется, чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 — база (базис) индукции, а затем доказывается, что если верно утверждение с номером n, то верно и следующее утверждение с номером n + 1 — шаг индукции, или индукционный переход.
Упорядоченное поле — алгебраическое поле, для всех элементов которого определён линейный порядок, согласованный с операциями поля. Наиболее практически важными примерами являются поля рациональных и вещественных чисел.
Одноро́дный многочле́н — многочлен, все одночлены которого имеют одинаковую полную степень. Любая алгебраическая форма является однородным многочленом. Квадратичная форма задается однородным многочленом второй степени, бинарная форма - однородным многочленом любой степени от двух переменных.
Комплексный логарифм — аналитическая функция, получаемая распространением вещественного логарифма на всю комплексную плоскость (кроме нуля). Существует несколько эквивалентных способов такого распространения. Данная функция имеет широкое применение в комплексном анализе. В отличие от вещественного случая, функция комплексного логарифма многозначна.
Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
В математике,
несократимая дробь (также приведённая дробь) — дробь, которую невозможно сократить. Иначе говоря, значение несократимой дроби не допускает более простое представление в виде дроби. В случае обыкновенных дробей «более простое» означает: с меньшим (но натуральным) знаменателем.
Гру́ппа Галуа ́ — группа, ассоциированная с расширением поля. Играет важную роль при исследовании расширений полей, в частности, в теории Галуа. Это понятие (в контексте группы перестановок корней многочлена) ввёл в математику Эварист Галуа в 1832 году.
Преде́льная то́чка множества в общей топологии — это такая точка, любая проколотая окрестность которой пересекается с этим множеством.
Сепара́бельное пространство (от лат. separabilis — отделимый) — топологическое пространство, в котором можно выделить счётное всюду плотное подмножество.
Целая функция — функция, регулярная во всей комплексной плоскости. Типичным примером целой функции может служить многочлен или экспонента, а также суммы, произведения и суперпозиции этих функций. Ряд Тейлора целой функции сходится во всей плоскости комплексного переменного. Логарифм, квадратный корень не являются целыми функциями.
Непрерывная функция — функция, которая меняется без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.
Конечная разность — математический термин, широко применяющийся в методах вычисления при интерполировании.
Подробнее: Конечные разности
Теоре́ма (др.-греч. θεώρημα «доказательство, вид; взгляд; представление, положение») — утверждение, выводимое в рамках рассматриваемой теории из множества аксиом посредством использования конечного множества правил вывода.
Алгебра над кольцом — алгебраическая система, которая является одновременно модулем над этим кольцом и кольцом сама по себе, причём эти две структуры взаимосвязаны. Понятие алгебры над кольцом является обобщением понятия алгебры над полем, аналогично тому как понятие модуля обобщает понятие векторного пространства.
В компле́ксном анализе вы́четом заданного объекта (функции, формы) называется объект (число, форма или когомологический класс формы), характеризующий локальные свойства заданного.
Подробнее: Вычет (комплексный анализ)
Дифференци́руемая (в точке) фу́нкция — это функция, у которой существует дифференциал (в данной точке). Дифференцируемая на некотором множестве функция — это функция, дифференцируемая в каждой точке данного множества. Дифференцируемость является одним из фундаментальных понятий в математике и имеет значительное число приложений как в самой математике, так и в других естественных науках.
Инвариа́нт — это свойство некоторого класса (множества) математических объектов, остающееся неизменным при преобразованиях определённого типа.
Характеристика (кольца или поля) — числовая величина, используемая в общей алгебре для описания некоторых свойств этих...
Функциональное уравнение — уравнение, выражающее связь между значением функции в одной точке с её значениями в других точках. Многие свойства функций можно определить, исследуя функциональные уравнения, которым эти функции удовлетворяют. Термин «функциональное уравнение» обычно используется для уравнений, несводимых простыми способами к алгебраическим уравнениям. Эта несводимость чаще всего обусловлена тем, что аргументами неизвестной функции в уравнении являются не сами независимые переменные, а...
«Тогда́ и то́лько тогда ́» — логическая связка эквиваленции между утверждениями, применяемая в логике, математике, философии. Чтобы быть эквиваленцией, связка должна быть идентична стандартному материальному условному высказыванию («только тогда» эквивалентно «если … то»), соединённому со своей противоположностью, откуда и название связки. В результате истинность одного утверждения требует такой же истинности другого, то есть либо оба они истинны, либо оба ложны. Можно спорить о том, передаёт ли выражение...
Интегра́л Ри́мана — одно из важнейших понятий математического анализа. Введён Бернхардом Риманом в 1854 году, и является одной из первых формализаций понятия интеграла.
Топологи́ческая гру́ппа (непрерывная группа) — это группа, которая одновременно является топологическим пространством, причём умножение элементов группы G × G → G и операция взятия обратного элемента G...
Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.
Конти́нуум-гипо́теза (проблема континуума, первая проблема Гильберта) — выдвинутое в 1877 году Георгом Кантором предположение о том, что любое бесконечное подмножество континуума является либо счётным, либо континуальным. Другими словами, гипотеза предполагает, что мощность континуума — наименьшая, превосходящая мощность счётного множества, и «промежуточных» мощностей между счетным множеством и континуумом нет, в частности, это предположение означает, что для любого бесконечного множества действительных...
Дифференциа́л (от лат. differentia «разность, различие») — линейная часть приращения функции.
Идеал — одно из основных понятий общей алгебры. Наибольшее значение идеалы имеют в теории колец, но также определяются и для полугрупп, алгебр и некоторых других алгебраических структур. Название «идеал» ведёт своё происхождение от «идеальных чисел», которые были введены в 1847 году немецким математиком Э. Э. Куммером. Простейшим примером идеала может служить подкольцо чётных чисел в кольце целых чисел. Идеалы дают удобный язык для обобщения результатов теории чисел на общие кольца.
Разрешимая группа — группа, ряд коммутантов которой заканчивается на тривиальной группе.
Расшире́ние Галуа ́ — алгебраическое расширение поля E/K, являющееся нормальным и сепарабельным. При этих условиях E будет иметь наибольшее количество автоморфизмов над K (если E конечно, то количество автоморфизмов также конечно и равно степени расширения ).
Функция делителей — арифметическая функция, связанная с делителями целого числа. Функция известна также под именем функция дивизоров.
Полный квадрат или квадратное число — число, являющееся квадратом некоторого целого числа. Иными словами, квадратом является целое число, квадратный корень которого тоже целый.
Наиме́ньшее о́бщее кра́тное (НОК) двух целых чисел m и n есть наименьшее натуральное число, которое делится на m и n без остатка. Обозначается одним из следующих способов...
Числовая последовательность (ранее в русскоязычной математической литературе встречался термин вариа́нта, принадлежащий Ш. Мерэ) — это последовательность элементов числового пространства.
Полное метрическое пространство — метрическое пространство, в котором каждая фундаментальная последовательность сходится (к элементу этого же пространства).