Связанные понятия
Полное метрическое пространство — метрическое пространство, в котором каждая фундаментальная последовательность сходится (к элементу этого же пространства).
Метри́ческим простра́нством называется непустое множество, в котором между любой парой элементов, обладающих определенными свойствами, определено расстояние, называемое ме́трикой.
Подробнее: Метрическое пространство
Метризуемое пространство — топологическое пространство, гомеоморфное некоторому метрическому пространству. Иначе говоря, пространство, топология которого порождается некоторой метрикой.
Метрика Громова — Хаусдорфа — способ определить расстояние между двумя компактными метрическими пространствами.
Выпуклые метрические пространства интуитивно определяются как метрические пространства с таким свойством, что любой «отрезок», который соединяет две точки этого пространства, содержит другие точки, кроме своих концов.
Подробнее: Выпуклое метрическое пространство
Откры́тое мно́жество — это множество, каждый элемент которого входит в него вместе с некоторой окрестностью (в метрических пространствах и, в частности, на числовой прямой). Например, внутренность шара (без границы) является открытым множеством, а шар вместе с границей - не является открытым.
Квазиизометрия — обобщение понятия изометрии на метрических пространствах, игнорирующая конечные отклонения, как абсолютные, так и относительные.
Инъективная оболочка — конструкция в метрической геометрии, дающая наименьшее инъективное метрическое пространство, включающее данное метрическое пространство.
Произведение топологических пространств — это топологическое пространство, полученное, как множество, декартовым произведением исходных топологических пространств, и снабжённое естественной топологией, называемой топологией произведения или тихоновской топологией. Слово «естественная» здесь употребляется в смысле теории категорий и означает, что эта топология удовлетворяет некоторому универсальному свойству.
Метри́ческий те́нзор , или ме́трика, — это симметричное тензорное поле ранга (0,2) на гладком многообразии, посредством которого задаются скалярное произведение векторов в касательном пространстве, длины кривых, углы между кривыми и т. д.
Гиперболическая группа — конечно-порождённая группа, граф Кэли которой, как метрическое пространство, является гиперболическим по Громову.
Ультрапредел — конструкция, позволяющая определить предел для широкого класса математических объектов.
Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Свя́зное двоето́чие , или двоеточие Александрова, — конечное топологическое пространство из двух точек определённого типа,
Метрика Васерштейна — естественная метрика на пространстве вероятностных мер в метрическом пространстве.
Вложение Куратовского — определённое изометрическое вложение метрического пространства в банахово пространство непрерывных ограниченных функций на нём.
В математике термин
матрица Картана имеет три значения. Все они названы по имени французского математика Эли Картана. Фактически, матрицы Картана в контексте алгебр Ли впервые исследовал Вильгельм Киллинг, в то время как форма Киллинга принадлежит Картану.
Грани́ца мно́жества A — множество всех точек, расположенных сколь угодно близко как к точкам во множестве A, так и к точкам вне множества A.
Субри́маново многообра́зие — математическое понятие, обобщающее риманово многообразие. Суть обобщения состоит в том, что скалярное произведение задается не на касательных пространствах целиком, а только на некоторых их подпространствах (как правило, фиксированной размерности).
Т-теория — раздел дискретной математики, посвящённый анализу деревьев и дискретных метрических пространств.
В геометрии гипотеза Келлера — это высказанная Отт-Генрихом Келлером гипотеза о том, что в любой мозаике в евклидовом пространстве, состоящей из однинаковых гиперкубов, найдутся два куба, соприкасающиеся грань-к-грани. Например, как показано на рисунке, в любой мозаике на плоскости из одинаковых квадратов, какие-то два квадрата должны соприкасаться ребро-к-ребру. Перрон доказал, что это верно в размерностях до 6. Однако для больших размерностей это неверно, как показали Лагарис и Шор для размерностей...
Бордизм , также бордантность — термин топологии, употребляющийся самостоятельно или в составе стандартных...
Компа́ктное простра́нство — определённый тип топологических пространств, обобщающий свойства ограниченности и замкнутости в евклидовых пространствах на произвольные топологические пространства.
n-Мерная
целочисленная решётка (или кубическая решётка), обозначается Zn, — это решётка в евклидовом пространстве Rn, точки которой являются n-кортежами целых чисел. Двумерная целочисленная решётка называется также квадратной решёткой. Zn является наиболее простым примером решётки корней. Целочисленная решётка является нечётной унимодулярной решёткой.
Мера Радона — мера на сигма-алгебре борелевских множеств на хаусдорфовом топологическом пространстве X, которая является локально конечной и внутреннее регулярной.
Алгебраическая поверхность — это алгебраическое многообразие размерности два. В случае геометрии над полем комплексных чисел алгебраическая поверхность имеет комплексную размерность два (как комплексное многообразие, если оно неособо), а потому имеет размерность четыре как гладкое многообразие.
Псевдотопологи́ческое простра́нство — множество с дополнительной предельной структурой определённого типа (так называемой псевдотопологией). Исторически понятие псевдотопологического пространства появилось как обобщение топологического пространства. Псевдотопологические пространства были введены в 1959 г. Фишером . Псевдотопологические пространства естественным образом возникают при построении дифференциального исчисления в пространствах без нормы. Топологические пространства можно рассматривать...
В математике монодро́ми́ей называется явление, состоящее в преобразовании некоторого объекта при обнесении его вдоль нетривиального замкнутого пути.
Подробнее: Монодромия
Случайное компактное множество — это, по существу, случайная величина со значениями в компактных множествах. Случайные компактные множества используются при изучении аттракторов случайных динамических систем.
Бра и кет (англ. bra-ket < bracket скобка) — алгебраический формализм (система обозначений), предназначенный для описания квантовых состояний. Называется также обозначениями Дирака. В матричной механике данная система обозначений является общепринятой.
Теорема Сарда — одна из теорем математического анализа, имеющих важные приложения в теории катастроф и теории динамических систем.Названа в честь американского математика Артура Сарда.
Точка округления (круговая точка, омбилическая точка или омбилика) ― точка на гладкой регулярной поверхности в евклидовом пространстве, в которой нормальные кривизны по всем направлениям равны.
В геометрии
теорема Декарта утверждает, что для любых трёх взаимно касающихся окружностей радиусы окружностей удовлетворяют некоторому квадратному уравнению. Решив это уравнение, можно построить четвёртую окружность, касающуюся остальных трёх заданных окружностей. Теорема названа в честь Рене Декарта, который сформулировал её в 1643 году.
Метрика Титса — метрика определённого типа на абсолюте пространства Адамара. Названна в честь Жака Титса.
Омега-язык (ω-язык) — это множество бесконечно длинных последовательностей символов.
Обобщённый четырёхугольник — это структура инцидентности, главное свойство которой — отсутствие треугольников (однако структура содержит много четырёхугольников). Обобщённый четырёхугольник является по определению полярным пространством ранга два. Обобщённые четырёхугольники являются обобщёнными многоугольниками с n = 4 и почти 2n-угольниками с n = 2. Они являются также в точности частичными геометриями pg(s,t,α) с α = 1.
Статическая изотропная метрика — это метрика определяющая статическое изотропное гравитационное поле. Частным случаем этой метрики является метрика Шварцшильда, на случай пустого (ничем не заполненного) пространства-времени.
Пучок — структура, используемая для установления отношений между локальными и глобальными данными.
В проективной геометрии
конфигурация на плоскости состоит из конечного множества точек и конечной конфигурации прямых, таких, что каждая точка инцидентна одному и тому же числу прямых и каждая прямая инцидентна одному и тому же числу точек.
Произведение двух или более объектов — это обобщение в теории категорий таких понятий, как декартово произведение множеств, прямое произведение групп и произведение топологических пространств. Произведение семейства объектов — это в некотором смысле самый общий объект, имеющий морфизмы во все объекты семейства.