Связанные понятия
Тор (тороид) — поверхность вращения, получаемая вращением образующей окружности вокруг оси, лежащей в плоскости этой окружности и не пересекающей её.
Окружность на сфере получается при пересечении сферы с плоскостью. Если плоскость проходит через центр сферы (то есть является диаметральной плоскостью), то получившаяся окружность будет иметь максимальный возможный радиус. Такая окружность называется большой окружностью (иногда большим кругом). Если пересекающая плоскость не проходит через центр, то получившаяся окружность называется малой окружностью. В сферической геометрии окружности на сфере являются аналогом окружностей в плоской геометрии...
Сетка Аполлония — фрактал, строящийся по трём попарно касающимся окружностям. Представляет собой предельное множество всевозможных последовательностей окружностей, каждая из которых касается трёх уже построенных. Назван в честь греческого математика Аполлония Пергского.
Радика́льная ось двух окружностей — геометрическое место точек, степени которых относительно двух заданных окружностей равны. Иными словами, равны длины четырех касательных, проведенных к двум данным окружностям из любой точки M данного геометрического места точек.
Говорят, что два и более объектов концентричны или коаксиальны, если они имеют один и тот же центр или ось. Окружности, правильные многоугольники, правильные многогранники и сферы могут быть концентричны друг другу (имея одну и ту же центральную точку), как могут быть концентричными и цилиндры (имея общую коаксиальную ось).
Подробнее: Концентричные объекты
Гипоцикло́ида (от греческих слов ὑπό — под, внизу и κύκλος — круг, окружность) — плоская кривая, образуемая точкой окружности, катящейся по внутренней стороне другой окружности без скольжения.
Фокус — в геометрии точка, относительно которой (которых) проводится построение некоторых кривых. Например, один или два фокуса могут использоваться при построении конических сечений, в число которых входит окружность, эллипс, парабола и гипербола. Также два фокуса используются при построении овала Кассини и овала Декарта. Большее число фокусов рассматривается при определении n-эллипса.
Эпицикло́ида (от др.-греч. ὲπί — на, над, при и κύκλος — круг, окружность) — плоская кривая, образуемая фиксированной точкой окружности, катящейся по внешней стороне другой окружности без скольжения.
Вписанно-описанный четырёхугольник — это выпуклый четырёхугольник, который имеет как вписанную окружность, так и описанную окружность. Из определения следует, что вписанно-описанные четырёхугольники имеют все свойства как описанных четырёхугольников, так и вписанных четырёхугольников. Другие названия этих четырёхугольников: хордо-касающийся четырёхугольник и бицентрический четырёхугольник. Их также называют двух-окружностными четырёхугольниками.
Касательная прямая к окружности в евклидовой геометрии на плоскости — прямая, которая имеет с окружностью ровно одну общую точку. Также можно определить касательную как предельное положение секущей, когда точки пересечения её с окружностью бесконечно сближаются. Касательные прямые к окружностям служат предметом рассмотрения ряда теорем и играют важную роль во многих геометрических построениях и доказательствах.
В математике и физике барице́нтр, или геометри́ческий центр, двумерной области — это среднее арифметическое положений всех точек фигуры. Определение распространяется на любой объект в n-мерном пространстве — барицентр является средним положением всех точек фигуры по всем координатным направлениям. Неформально — это точка равновесия фигуры, вырезанной из картона в предположении, что картон имеет постоянную плотность и гравитационное поле постоянно по величине и направлению.
Подробнее: Барицентр
Э́ллипс (др.-греч. ἔλλειψις «опущение; нехватка, недостаток (эксцентриситета до 1)») — замкнутая кривая на плоскости, которая может быть получена как пересечение плоскости и кругового цилиндра или как ортогональная проекция окружности на плоскость.
В гиперболической геометрии
гиперболический треугольник является треугольником на гиперболической плоскости. Он состоит из трёх отрезков, называемых сторонами или рёбрами, и трёх точек, называемых углами или вершинами.
В геометрии трисектриса Маклорена — это кубика, примечательная своим свойством трисекции, поскольку она может быть использована для трисекции угла. Её можно определить как геометрическое место точек пересечения двух прямых, каждая из которых вращаются равномерно вокруг двух различных точек (полюсов) с отношением угловых скоростей 1:3, при этом первоначально прямые совпадают с прямой, проходящей через эти полюса. Обобщение этого построения называется Секущая Маклорена. Секущая названа в честь Колина...
В евклидовой геометрии описанный четырёхугольник — это выпуклый четырёхугольник, стороны которого являются касательными к одной окружности внутри четырёхугольника. Эта окружность называется вписанной в четырёхугольник. Описанные четырёхугольники являются частным случаем описанных многоугольников.
Набор окружностей
Джонсона состоит из трёх окружностей одинакового радиуса r, имеющих одну общую точку пересечения H. В такой конфигурации окружности обычно имеют четыре точки пересечения (точки, через которые проходят по меньшей мере две окружности) — это общая точка пересечения H, через которую проходят все три окружности, и по дополнительной точке для каждой пары окружностей (будем о них говорить как о попарных пересечениях). Если любые две окружности не пересекаются (а только лишь касаются) они...
Кардио́ида (греч. καρδία — сердце, греч. εἶδος — вид) — плоская линия, которая описывается фиксированной точкой окружности, катящейся по неподвижной окружности с таким же радиусом. Получила своё название из-за схожести своих очертаний со стилизованным изображением сердца.
Пара́бола (греч. παραβολή — приложение) — геометрическое место точек, равноудалённых от данной прямой (называемой директрисой параболы) и данной точки (называемой фокусом параболы).
Орицикл (греч. ὅρος + κύκλος — «граница + круг»), предельная линия ― линия на плоскости Лобачевского, ортогональная к некоторому семейству параллельных прямых.
Окружность Брокара (окружность семи точек) — окружность, диаметром которой является отрезок, соединяющий центр описанной окружности данного треугольника и его точку Лемуана. Две точки Брокара лежат на этой окружности, так же как и три вершины треугольника Брокара. Эта окружность концентрическая с первой окружностью Лемуана.
Суперэллипсоид — геометрическое тело, поперечными сечениями которого являются суперэллипсы (кривые Ламе) с одним и тем же показателем степени r, а вертикальные сечения — суперэллипсы с одним и тем же показателем степени t. Некоторые суперэллипсоиды являются суперквадриками, однако ни одно из этих семейств не является подмножеством другого.
Окружность Аполло́ния — геометрическое место точек плоскости, отношение расстояний от которых до двух заданных точек — величина постоянная, не равная единице.
Описанное коническое сечение или описанная коника для треугольника — это коническое сечение, проходящее через три вершины треугольника, а вписанное коническое сечение или вписанная коника — это вписанное в треугольник коническое сечение, т.е. касающееся сторон треугольника (возможно, не самих сторон, а их продолжений) Пусть даны три различные точки A,B,C, не лежащие на одной прямой, и пусть ΔABC — треугольник, имеющий эти точки в качестве вершин. Обычно считается, что буква, например A, обозначает...
Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или сфере), а также длина этого отрезка. Радиус составляет половину диаметра.
Вписанная в треугольник окружность — окружность внутри треугольника, касающаяся всех его сторон; наибольшая окружность, которая может находиться внутри треугольника. Центр этой окружности является точкой пересечения биссектрис треугольника и называется инцентром треугольника.
Эпитрохо́ида (от греч. ἐπί — на, над, при и греч. τροχός — колесо) — плоская кривая, образуемая точкой, жёстко связанной с окружностью, катящейся по внешней стороне другой окружности.
Параболические координаты — ортогональная
система координат на плоскости, в которой координатные линии являются конфокальными параболами. Трёхмерный вариант этой системы координат получается при вращении парабол вокруг их оси симметрии.
Треуго́льник Рёло ́ представляет собой область пересечения трёх равных кругов с центрами в вершинах правильного треугольника и радиусами, равными его стороне. Негладкая замкнутая кривая, ограничивающая эту фигуру, также называется треугольником Рёло.
Треуго́льник (в евклидовом пространстве) — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью (например, для определения понятия площади).
В геометрии конциклическими (или гомоциклическими) точками называют точки, находящиеся на одной окружности. Три точки на плоскости, не лежащие на одной прямой, всегда лежат на одной окружности, поэтому иногда термин «конциклические» прилагают только к наборам из 4 или более точек.
Подробнее: Конциклические точки
Кватернионы предоставляют удобное математическое обозначение положения и вращения объектов в пространстве. В сравнении с углами Эйлера, кватернионы позволяют проще комбинировать вращения, а также избежать проблемы, связанной с невозможностью поворота вокруг оси, независимо от совершённого вращения по другим осям (на иллюстрации). В сравнении с матрицами они обладают большей вычислительной устойчивостью и могут быть более эффективными. Кватернионы нашли своё применение в компьютерной графике, робототехнике...
Четырёхугольник (греч. τετραγωνον) — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся (см. рис.). Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеется в виду только простые четырёхугольники.
Описанный многоугольник , известный также как тангенциальный многоугольник — это выпуклый многоугольник, который содержит вписанную окружность. Это окружность, которая касательна каждой стороны многоугольника. Двойственный многоугольник описанного многоугольника — это многоугольник, который имеет описанную окружность, проходящую через все его вершины.
Окружности Мальфатти — три окружности внутри заданного треугольника, такие, что каждая окружность касается двух других и двух сторон треугольника. Окружности названы именем Джанфранческо Мальфатти, который начал исследовать задачу построения этих окружностей с ошибочным убеждением, что они в сумме дают максимальную возможную площадь трёх непересекающихся окружностей внутри треугольника. Задача Мальфатти относится к обеим задачам — как к построению окружностей Мальфатти, так и к задаче нахождения...
Сферический треугольник — геометрическая фигура на поверхности сферы, состоящая из трёх точек и трёх дуг больших кругов, соединяющих попарно эти точки. Три больших круга на поверхности сферы, не пересекающихся в одной точке, образуют восемь сферических треугольников. Соотношения между элементами сферических треугольников изучает сферическая тригонометрия.
Пучок (в аналитической и проективной геометрии) — семейство геометрических объектов, обладающих некоторым общим свойством. Например, пучком называют множество прямых (или кривых какого-либо другого вида), проходящих через данную точку плоскости (или пространства). Пучком является и множество окружностей, проходящих через две заданные точки плоскости.
Декера́кт — десятимерный гиперкуб, аналог куба в десятимерном пространстве. Определяется как выпуклая оболочка 1024 точек. Он может быть назван по символу Шлефли {4,38}, будучи составленным из 3 9-кубов вокруг каждой 8-грани. Слово «декеракт» — портманто из слов «тессеракт» и греч. δεκα — десять измерений. Также он может быть назван как икосаксеннон или икоса-10-топ от греч. εικοσα — двадцать и топ — 10-политоп. Политоп, двойственный к 10-кубу, называется 10-ортоплекс (или 10-гипероктаэдр).
Пло́скость — одно из основных понятий геометрии. При систематическом изложении геометрии понятие плоскости обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии.
Зацепление Хопфа — простейшее нетривиальное зацепление с двумя и более компонентами , состоит из двух окружностей, зацеплённых однократно и названо по имени Хайнца Хопфа.
Проективная пло́скость — двумерное проективное пространство. Важным частным случаем является вещественная проективная плоскость.
Поверхность вращения — поверхность, образуемая при вращении вокруг прямой (оси поверхности) произвольной линии (прямой, плоской или пространственной кривой). Например, если прямая пересекает ось вращения, то при её вращении получится коническая поверхность, если параллельна оси — цилиндрическая, если скрещивается с осью — гиперболоид. Одна и та же поверхность может быть получена вращением самых разнообразных кривых.
Внеописанный четырёхугольник — это выпуклый четырёхугольник, продолжения всех четырёх сторон которого являются касательными к окружности (вне четырёхугольника). Окружность называется вневписанной. Центр вневписанной окружности лежит на пересечении шести биссектрис. Это биссектрисы двух внутренних углов противоположных углов четырёхугольника, биссектрисы внешних углов двух других вершин, и биссектрисы внешних углов в точках пересечения продолжений противоположных сторон (смотрите рисунок справа, указанные...
В геометрии конфигурацией
Мёбиуса или тетраэдрами Мёбиуса называется конфигурация в евклидовом пространстве или проективном пространстве, состоящая из двух взаимно вписанных тетраэдров — каждая вершина одного тетраэдра лежит на плоскости, проходящей через грань другого тетраэдра и наоборот. Таким образом, в результирующей системе восьми точек и восьми плоскостей каждая точка лежит на четырёх плоскостях (три плоскости определяют вершину тетраэдра, а четвёртая плоскость — это плоскость, проходящая...
Гиперцикл ы через заданную точку, имеющие одну и ту же касательную в этой точке, сходятся к орициклу по мере стремления расстояния к бесконечности.
Гипотрохоида — плоская кривая, образуемая фиксированной точкой, находящейся на фиксированной радиальной прямой окружности, катящейся по внутренней стороне другой окружности.