Некодирующая ДНК или Мусорная ДНК (англ. Non-coding DNA англ. junk DNA) — части геномной ДНК организмов, которые не кодируют последовательности белков. Некоторые некодирующие ДНК переводятся в функциональные некодирующие РНК-молекулы. Другие функции некодирующей ДНК включают регуляцию последовательностей кодирующих белки, центромер и теломер.
Термин «мусорная ДНК» стал популярным в 1960-х. В соответствии с T. Ryan Gregory, геномным биологом, первое явное обсуждение природы «мусорной» ДНК было сделано David Comings в 1972 году и он применил этот термин ко всем некодирующим ДНК. Термин был формализован Сусуму Оно в 1972 году, который заметил, что генетический груз нейтральных мутаций находится на верхнем пределе значений для функционирующих локусов, которые могли быть ожидаемыми исходя из типичной частоты мутаций. Сусуму предсказал, что геномы млекопитающих не могут содержать более чем 30 000 локусов из-за давления естественного отбора, так как «стоимость» мутационной нагрузки вызвала бы неизбежное снижение приспособленности, и в конечном счете вымирание. Этот прогноз остается верным, геном человека содержит приблизительно 20 000 генов. Другим подтверждением теории Оно служит наблюдение, что даже близкородственные виды могут иметь очень разные (отличающиеся на порядок) по размеру геномы, которое окрестили C-парадокс (избыточность генома) в 1971 году.Хотя плодотворность термина «мусорная ДНК» была поставлена под сомнение на том основании, что он вызывает, априори, предположение о полном отсутствии функций, и хотя рекомендовано использовать более нейтральный термин, такой как «некодирующая ДНК»; термин «мусорная ДНК» остается наименованием для той части геномной последовательности, для которой не обнаружено значимой биологической функции и в которой при сравнительном анализе последовательности не выявляются консервативные элементы служащие признаком того, что она может обеспечивать адаптивное преимущество. В конце 70-х стало очевидным, что большая часть некодирующей ДНК в больших геномах берут свое начало от размножающихся эгоистичных подвижных элементов, которые W. Ford Doolittle и Carmen Sapienza в 1980 описали в журнале Nature: «Показано, что если данная ДНК или класс ДНК, с недоказанным фенотипическим проявлением выработала стратегию (такую как транспозиция), которая обеспечивает её выживание в геноме, то никакое другое объяснение её существования не требуется.» Можно ожидать, что количество мусорной ДНК будет зависеть от скорости амплификации этих элементов и скорости потери нефункциональной ДНК. В том же номере Nature, Орджел, Лесли Илизер и Крик, Фрэнсис написали, что мусорная ДНК имеет «небольшую специфичность и мало или вовсе не обладает селективным преимуществом для организма». Этот термин встречается, в основном, в научно-популярной литературе и в разговорном стиле в научных публикациях, и было высказано предположение Шаблон:Quantify, что его коннотации могут сдерживать интерес к установлению биологических функций некодирующей ДНК.Несколько линий доказательств показывают, что некоторые последовательности «мусорной ДНК», скорее всего, должны иметь неизвестную нам функциональную активность и что процесс экзаптации фрагментов первоначально эгоистичной или нефункциональной ДНК было обычным явлением на протяжении всей эволюции. В 2012, проект ENCODE, являющийся исследовательской программой, поддерживаемой National Human Genome Research Institute, сообщил, что 76 % некодирующей ДНК генома человека подвержено транскрипции и что около половины генома каким-то образом связывает регуляторные белки, такие как факторы транскрипции.Ранее считалось, что около 95 % последовательностей ДНК генома человека можно отнести к мусорной ДНК. Такие последовательности включают в себя последовательности интронов и участки ДНК между генами, а также повторенные участки. Однако в 2012 году в публикациях проекта «Энциклопедия элементов ДНК» (ENCODE) было показано, что доля мусорной ДНК сильно завышена, и до 80 % генома имеет биохимические функции.
Хотя, сообщение ENCODE о том, что свыше 80 % генома человека биохимически функционально, подвергнуто критике другими учеными, которые утверждают, что ни доступность последовательностей генома для факторов транскрипции, ни их транскрипция не гарантирует, что эти последовательности имеют биохимическую функцию и что их транскрипция дает селективное преимущество. Более того, значительно более низкие оценки функциональности до ENCODE были основаны на оценках консервативности генома млекопитающих.В ответ на такую точку зрения, другие исследователи утверждают, что широко распространённые транскрипция и сплайсинг, которые наблюдаются в геноме человека непосредственно при биохимических анализах, являются более точными показателями генетической функции, чем консервативность генома, потому что оценка консервативности относительна из-за невероятных различий в размерах генома даже среди близкородственных видов. Оценка консервативности может быть использована для облегчения поиска функциональных элементов генома, но не для отсева или сохранения при оценке общего количества функциональных элементов которые могли бы находится в геноме, поскольку элементы которые что-то делают на молекулярном уровне могут быть пропущены методами сравнительной геномики. Более того, большая часть известной мусорной ДНК участвует в эпигенетической регуляции, по-видимому, необходима для развития сложных организмов.В статье 2014 года, ENCODE исследователи попытались ответить на «вопрос о том, действительно ли неконсервативные, но биохимически активные области действительно функциональны». Они заметили, что в литературе, функциональные части генома были определены по-разному в предыдущих исследованиях в зависимости от используемых подходов. Существует три общих подхода, используемых для идентификации функциональных частей генома человека: генетические методы (основанные на изменении фенотипа), эволюционные подходы (основанные на консервативности) и биохимические методы (основанные на биохимических исследованиях и использующиеся ENCODE). Все три метода имеют свои ограничения: генетические методы могут терять функциональные элементы которые физически не проявляются в организме, эволюционные подходы испытывают трудности с использованием точных множественных выравниваний последовательностей, поскольку геномы, даже близко родственных видов значительно отличаются, а биохимические исследования, хотя и обладают высокой воспроизводимостью, но биохимический сигнал не всегда автоматически означает функциональность.Они заметили, что 70 % транскрибирующихся последовательностей имело менее 1 транскрипта на клетку. Они отметили что это «является сложной задачей выбора между тем, чем является воспроизводимый, но низкий уровень биохимического сигнала, присущей большей доли генома с малой эволюционной консервативностью, специфической функцией или биологическим шумом». Кроме того, разрешающая способность анализа часто намного больше, чем лежащие в его основе функциональные составляющие поэтому некоторые из воспроизводимых «биохимически активных но селективно нейтральных» последовательностей вряд ли выполняют значимые функции, особенно те, у которых низкий уровень биохимического сигнала. К этому они добавили, «Однако мы также признаем существенные ограничения в нашем текущем определении границ, учитывая, что некоторые специфические для человека функции являются важными, но не консервативными и что регионы, имеющие отношение к заболеваниям не обязательно должны быть выборочно отсеяны, чтобы быть функциональными.» С другой стороны, они утверждали что 12-15 % чаcть функционально ограниченной ДНК человека, по оценке различных экстраполяционных эволюционных методов, все ещё может быть недооцененной. Они пришли к выводу, что в отличие от эволюционных и генетических данных биохимические данные дают представление как о молекулярной функции, которую обслуживают лежащие в основе элементы ДНК, так как и типы клеток, в которых они действуют. В конечном счете генетические, эволюционные и биохимические подходы могут быть использованы как дополняющие друг друга для выявления областей, которые могут функционировать в биологии и болезнях человека.Некоторые критики утверждают, что функциональность может быть оценена только в отношении соответствующей нулевой гипотезы. В этом случае, нулевая гипотеза будет заключаться в том, что эти части генома нефункциональны и обладают свойствам, будь то на основе их консервативности или биохимической активности, которые ожидались бы от них на основе нашего общего понимания молекулярной эволюции и биохимии. Согласно этим критикам, до тех пор, пока не будет показано, что область, о которой идет речь, имеет дополнительные функции, помимо ожидаемой при нулевой гипотезе, её условно следует обозначать как нефункциональную.Единой концепции эволюционной роли и возникновения «мусорной» ДНК пока нет, однако существует мнение о том, что некодирующая ДНК эукариот представляет собой остатки некодирующих последовательностей ДНК, возникших при становлении жизни. Прокариоты были вынуждены сократить размер своих геномов для того, чтобы уменьшить количество ДНК, в которой могут происходить мутации, в то время как эукариоты «пошли по пути» диплоидности и регулярного полового процесса.