Связанные понятия
Форма Бэкуса — Наура (сокр. БНФ, Бэкуса — Наура форма) — формальная система описания синтаксиса, в которой одни синтаксические категории последовательно определяются через другие категории. БНФ используется для описания контекстно-свободных формальных грамматик. Существует расширенная форма Бэкуса — Наура, отличающаяся лишь более ёмкими конструкциями.
Формальная грамматика или просто грамматика в теории формальных языков — способ описания формального языка, то есть выделения некоторого подмножества из множества всех слов некоторого конечного алфавита. Различают порождающие и распознающие (или аналитические) грамматики — первые задают правила, с помощью которых можно построить любое слово языка, а вторые позволяют по данному слову определить, входит ли оно в язык или нет.
Абстрактное синтаксическое дерево (АСД) — в информатике конечное помеченное ориентированное дерево, в котором внутренние вершины сопоставлены (помечены) с операторами языка программирования, а листья — с соответствующими операндами. Таким образом, листья являются пустыми операторами и представляют только переменные и константы.
Формальный язык в математической логике и информатике — множество конечных слов (строк, цепочек) над конечным алфавитом. Понятие языка чаще всего используется в теории автоматов, теории вычислимости и теории алгоритмов. Научная теория, которая имеет дело с этим объектом, называется теорией формальных языков.
Контекстно-свободная грамматика (КС-грамматика, бесконтекстная грамматика) — частный случай формальной грамматики (тип 2 по иерархии Хомского), у которой левые части всех продукций являются одиночными нетерминалами (объектами, обозначающими какую-либо сущность языка (например: формула, арифметическое выражение, команда) и не имеющими конкретного символьного значения). Смысл термина «контекстно-свободная» заключается в том, что есть возможность применить продукцию к нетерминалу, причём независимо...
Конъю́нкция (от лат. conjunctio — «союз, связь») — логическая операция, по смыслу максимально приближенная к союзу «и». Синонимы: логи́ческое «И», логи́ческое умноже́ние, иногда просто «И».
В информатике
лексический анализ («токенизация», от англ. tokenizing) — процесс аналитического разбора входной последовательности символов на распознанные группы — лексемы, с целью получения на выходе идентифицированных последовательностей, называемых «токенами» (подобно группировке букв в словах). В простых случаях понятия «лексема» и «токен» идентичны, но более сложные токенизаторы дополнительно классифицируют лексемы по различным типам («идентификатор, оператор», «часть речи» и т. п.). Лексический...
Ме́тод синтакси́ческих шабло́нов — техника автоматического преобразования формализованных структур знаний, хранимых в базе данных, в тексты естественного языка, основана на концепции падежной грамматики Чарльза Филлмора.
Матричная грамматика — это формальная грамматика, в которой правила вывода группируются в конечные последовательности. Правила вывода не могут применяться по отдельности, а только в последовательности. При применении такой последовательности, замена производится в соответствии с каждым правилом в последовательности, с первой по последнюю. Последовательности называют матрицами.
Описательные ло́гики или дескрипцио́нные ло́гики(сокр. ДЛ, англ. description logics, иногда используется неточный перевод: дескрипти́вные логики) — семейство языков представления знаний, позволяющих описывать понятия предметной области в недвусмысленном, формализованном виде. Они сочетают в себе, с одной стороны, богатые выразительные возможности, а с другой — хорошие вычислительные свойства, такие как разрешимость и относительно невысокая вычислительная сложность основных логических проблем, что...
Подробнее: Дескрипционная логика
Расширенная форма Бэкуса — Наура (расширенная Бэкус — Наурова форма (РБНФ)) (англ. Extended Backus–Naur Form (EBNF)) — формальная система определения синтаксиса, в которой одни синтаксические категории последовательно определяются через другие. Используется для описания контекстно-свободных формальных грамматик. Предложена Никлаусом Виртом. Является расширенной переработкой форм Бэкуса — Наура, отличается от БНФ более «ёмкими» конструкциями, позволяющими при той же выразительной способности упростить...
Математические обозначения («язык математики») — сложная графическая система обозначений, служащая для изложения абстрактных математических идей и суждений в человеко-читаемой форме. Составляет (по своей сложности и разнообразию) значительную долю неречевых знаковых систем, применяемых человечеством. В данной статье описывается общепринятая международная система обозначений, хотя различные культуры прошлого имели свои собственные, и некоторые из них даже имеют ограниченное применение до сих пор...
Логика первого порядка , называемая иногда логикой или исчислением предикатов — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высших порядков.
Нисходящий синтаксический анализ (англ. top-down parsing) — это один из методов определения принадлежности входной строки к некоторому формальному языку, описанному LL(k) контекстно-свободной грамматикой. Это класс алгоритмов грамматического анализа, где правила формальной грамматики раскрываются, начиная со стартового символа, до получения требуемой последовательности токенов.
Метало́гика — изучение метатеории логики. В то время, как логика представляет собой исследование способов применения логических систем для рассуждения, доказательств и опровержений, металогика исследует свойства самих логических систем.
Трои́чная ло́гика (трёхзначная логика или тернарная логика) — один из видов многозначной логики, предложенный Яном Лукасевичем в 1920 году. Трёхзначная логика — исторически первая многозначная логика. Она является простейшим расширением двузначной логики.
Логика высказываний , или пропозициональная логика (лат. propositio — «высказывание»), или исчисление высказываний — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
Математи́ческая ло́гика (теоретическая логика, символическая логика) — раздел математики, изучающий математические обозначения, формальные системы, доказуемость математических суждений, природу математического доказательства в целом, вычислимость и прочие аспекты оснований математики. В более широком смысле рассматривается как математизированная ветвь формальной логики — «логика по предмету, математика по методу», «логика, развиваемая с помощью математических методов».
В логике логи́ческими опера́циями называют действия, вследствие которых порождаются новые понятия, с использованием уже существующих. В более узком смысле, понятие логической операции используется в математической логике и программировании.
Подробнее: Логическая операция
Конкатена́ция (лат. concatenatio «присоединение цепями; сцепле́ние») — операция склеивания объектов линейной структуры, обычно строк. Например, конкатенация слов «микро» и «мир» даст слово «микромир».
Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
В логике обычно используется много символов для выражения логических сущностей. Поскольку логики знакомы с этими символами, они не объясняют их каждый раз при использовании. Для студентов, изучающих логику, следующая таблица перечисляет большинство общеупотребимых символов вместе с их именами и связанными областями математики. Кроме того, третий столбец содержит неформальное определение, пятый и шестой дают код Unicode и имя для использования в HTML документах.
Подробнее: Список логических символов
Сема́нтика в программировании — дисциплина, изучающая формализации значений конструкций языков программирования посредством построения их формальных математических моделей. В качестве инструментов построения таких моделей могут использоваться различные средства, например, математическая логика, λ-исчисление, теория множеств, теория категорий, теория моделей, универсальная алгебра. Формализация семантики языка программирования может использоваться как для описания языка, определения свойств языка...
Нумерация Гёделя — это функция g, сопоставляющая каждому объекту некоторого формального языка её номер. С её помощью можно явно пронумеровать следующие объекты языка: переменные, предметные константы, функциональные символы, предикатные символы и формулы, построенные из них. Построение нумерации Гёделя для объектов теории называется арифметизацией теории — оно позволяет переводить высказывания, аксиомы, теоремы, теории в объекты арифметики. При этом требуется, чтобы нумерация g была эффективно вычислимой...
Логика разделения , сепарационная логика (англ. separation logic) в информатике — формальная система, предназначенная для верификации программ, содержащих изменяемые структуры данных и указатели, расширение логики Хоара. Разработана Джоном Рейнольдсом (англ. John C. Reynolds), Питером О’Хирном (англ. Peter O'Hearn), Самином Иштиаком (англ. Samin Ishtiaq) и Хонсёком Яном (англ. Hongseok Yang) на основе работ Рода Бёрстола (англ. Rod Burstall). Язык утверждений логики разделения является специальным...
Абстрактный семантический граф — это более высокий уровень абстракции, чем абстрактное синтаксическое дерево (АСД), которое используется для описания синтаксической структуры выражения или программы.
Формальная семантика — дисциплина, изучающая семантику (интерпретации) формальных и естественных языков путём их формального описания в математических терминах.
Логика Хоара (англ. Hoare logic, также Floyd—Hoare logic, или Hoare rules) — формальная система с набором логических правил, предназначенных для доказательства корректности компьютерных программ. Была предложена в 1969 году английским учёным в области информатики и математической логики Хоаром, позже развита самим Хоаром и другими исследователями. Первоначальная идея была предложена в работе Флойда, который опубликовал похожую систему в применении к блок-схемам (англ. flowchart).
Ле́йпцигские пра́вила глосси́рования (англ. Leipzig glossing rules) — предложенный для унифицированного использования при представлении языковых примеров в лингвистических работах набор правил глоссирования (поморфемной нотации). Включает как собственно правила оформления интерлинеарных глосс, так и список рекомендуемых сокращений (грамматических помет, «ярлыков»), используемых для обозначения грамматических категорий.
Динамическая и формальная эквивалентность (термин ввёл Юджин Найда) — это два различных подхода к переводу, которые помогают избежать буквализмов из текста оригинала в тексте перевода, что наблюдалось в переводах Библии.
Выска́зывание в математической логике — предложение, выражающее суждение. Если суждение, составляющее содержание (смысл) некоторого высказывания, истинно, то и о данном высказывании говорят, что оно истинно. Сходным образом ложным называют такое высказывание, которое является выражением ложного суждения. Истинность и ложность называются логическими, или истинностными, значениями высказываний.Высказывание должно быть повествовательным предложением, и противопоставляются повелительным, вопросительным...
Грамматика сложения деревьев (англ. tree-adjoining grammar, TAG) — это формальная грамматика, придуманная Аравиндом Джоши. Эта грамматика обобщает контекстно-свободную грамматику тем, что элементарной единицей в правилах вывода являются деревья, а не отдельные символы. Таким образом грамматика определяет правила замены узлов дерева на поддеревья (см. дерево в теории графов и дерево в информатике).
Языком
Дика (англ. Dyck language) над 2n буквами называется контекстно-свободный язык над алфавитом...
Синтаксическая диаграмма — это направленный граф с одним входным ребром и одним выходным ребром и помеченными вершинами. Синтаксическая диаграмма задаёт язык. Цепочка пометок при вершинах на любом пути от входного ребра к выходному — это цепочка языка, задаваемого синтаксической диаграммой. Поэтому можно считать, что синтаксическая диаграмма — это одна из форм порождающей грамматики автоматных языков. Синтаксические диаграммы и конечные автоматы имеют тесную связь: любой автоматный язык задаётся...
Математическая формула (от лат. formula — уменьшительное от forma — образ, вид) — в математике, а также физике и прикладных науках, символическая запись высказывания (которое выражает логическое суждение), либо формы высказывания. Формула, наряду с термами, является разновидностью выражения формализованного языка.
Ля́мбда-исчисле́ние (λ-исчисление) — формальная система, разработанная американским математиком Алонзо Чёрчем, для формализации и анализа понятия вычислимости.
Графическая система в узком смысле — инвентарь общеобязательных графем, используемых в некоторой письменной традиции. В широком смысле — этот же инвентарь и так называемое базисное соответствие между графемами и фонемами.
Норма́льный алгори́тм (алгори́фм) Ма́ркова (НАМ, также марковский алгоритм) — один из стандартных способов формального определения понятия алгоритма (другой известный способ — машина Тьюринга). Понятие нормального алгоритма введено А. А. Марковым (младшим) в конце 1940-х годов в работах по неразрешимости некоторых проблем теории ассоциативных вычислений. Традиционное написание и произношение слова «алгорифм» в этом термине также восходит к его автору, многие годы читавшему курс математической логики...
Бу́лева фу́нкция (или логи́ческая функция, или функция а́лгебры ло́гики) от n аргументов — в дискретной математике — отображение Bn → B, где B = {0,1} — булево множество. Элементы булева множества {1, 0} обычно интерпретируют как логические значения «истинно» и «ложно», хотя в общем случае они рассматриваются как формальные символы, не несущие определённого смысла. Неотрицательное целое число n называют арностью или местностью функции, в случае n = 0 булева функция превращается в булеву константу...
Элемента́рная а́лгебра — самый старый раздел алгебры, в котором изучаются алгебраические выражения и уравнения над вещественными и комплексными числами.
Индукция грамматики (или грамматический вывод) — это процесс в машинном обучении для обучения формальной грамматике (обычно в виде набора правил вывода или порождающих правил или, альтернативно, как конечный автомат или автомат другого вида) из набора наблюдений, то есть построение модели, которая описывает наблюдаемые объекты. Более обще, грамматический вывод — это такая ветвь машинного обучения, в которой пространство примеров состоит из дискретных комбинаторных объектов, таких как строки, деревья...
Код — взаимно однозначное отображение конечного упорядоченного множества символов, принадлежащих некоторому конечному алфавиту, на иное, не обязательно упорядоченное, как правило более обширное множество символов для кодирования передачи, хранения или преобразования информации.
Пролог (англ. Prolog) — язык и система логического программирования, основанные на языке предикатов математической логики дизъюнктов Хорна, представляющей собой подмножество логики предикатов первого порядка.
Отноше́ние — математическая структура, которая формально определяет свойства различных объектов и их взаимосвязи. Распространёнными примерами отношений в математике являются равенство (=), делимость, подобие, параллельность и многие другие.
Модальная логика (от лат. modus — способ, мера) — логика, в которой кроме стандартных логических связок, переменных и/или предикатов есть модальности (модальные операторы).
Дистрибути́вная сема́нтика — это область лингвистики, которая занимается вычислением степени семантической близости между лингвистическими единицами на основании их распределения (дистрибуции) в больших массивах лингвистических данных (текстовых корпусах).
Переме́нная — атрибут физической или абстрактной системы, который может изменять своё, как правило численное, значение. Понятие переменной широко используется в таких областях как математика, естественные науки, техника и программирование. Примерами переменных могут служить: температура воздуха, параметр функции и многое другое.
Трансформа́ция — понятие языкознания, восходящее к З. Харрису и первоначально обозначавшее то или иное правило, по которому из так называемых ядерных предложений языка (таковыми считались простые утвердительные предложения с глаголом в изъявительном наклонении активного залога настоящего времени без модальных слов и осложняющих элементов) получаются производные:102. Так предполагалось объяснять явления парадигматики в синтаксисе — случаи, когда определённое изменение значения ядерного предложения...
Вариа́нтность (лат. varians, род. variantis — «изменяющийся») — в языкознании: фундаментальное свойство способа существования и функционирования единиц языка и языковой системы в целом. Характеризуется с помощью понятий варианта, инварианта, варьирования.