Связанные понятия
Параллелепи́пед (др.-греч. παραλληλ-επίπεδον от др.-греч. παρ-άλληλος — «параллельный» и др.-греч. ἐπί-πεδον — «плоскость») — призма, основанием которой служит параллелограмм, или (равносильно) многогранник, у которого шесть граней и каждая из них — параллелограмм.
Девятигранник (иногда используется название эннеаэдр) — это многогранник с девятью гранями. Существует 2606 видов выпуклых девятигранников, каждый из которых имеет свою отличную конфигурацию вершин, рёбер и граней. Ни один из этих многогранников не является правильным.
Купол можно рассматривать как призму, где один из многоугольников наполовину стянут путём объединения вершин попарно.
В геометрии треугольная призма — это призма с тремя боковыми гранями. Этот многогранник имеет в качестве граней треугольное основание, его копию, полученную в результате параллельного переноса и 3 грани, соединяющие соответствующие стороны. Прямая треугольная призма имеет прямоугольные боковые стороны, в противном случае призма называется косой.
Большой псевдоромбокубооктаэдр — это один из двух псевдооднородных многогранников, другой — выпуклый удлинённый квадратный гиробикупол или псевдоромбокубооктаэдр. Он имеет ту же самую вершинную фигуру, что и невыпуклый большой ромбокубооктаэдр (однородный многогранник), но не является однородным и имеет меньшую группу симметрии. Многогранник можно получить из большого ромбокубооктаэдра, если взять квадратную грань и 8 граней, имеющих общие вершины с ней (образуя скрещенный квадратный купол) и повернуть...
Клин является подклассом призматоидов, если рассматривать верхнее ребро как вырожденную грань (у призматоидов две грани параллельны).
Ромбокубооктаэдр или ромбокубоктаэдр — полуправильный многогранник, гранями которого являются 18 квадратов и 8 треугольников. Также называется малым ромбокубооктаэдром.
Ромботриаконтáэдр( от греч. τριάκοντα (греч. τριάντα) — «тридцать» и εδρον — «грань») — выпуклый тридцатигранник с одинаковыми ромбическими гранями. Относится к каталановым телам. Является двойственным по отношению к икосододекаэдру и зоноэдром.
Подробнее: Ромботриаконтаэдр
Плосконосая квадратная мозаика — это полуправильное замощение плоскости. В каждой вершине сходятся три треугольника и два квадрата. Символ Шлефли мозаики — s{4,4}.
Бикупол ы более высоких порядков можно построить, если допускается растяжение боковых граней в прямоугольники и равнобедренные треугольники.
В евклидовой геометрии равнобедренная трапеция — это выпуклый четырёхугольник с осью симметрии, проходящей через середины двух противоположных сторон. Этот четырёхугольник является частным случаем трапеций. В любой равнобедренной трапеции две противоположные стороны (основания) параллельны, а две другие стороны (боковые) имеют одинаковые длины (свойство, которому удовлетворяет также параллелограмм). Диагонали также имеют одинаковые длины. Углы при каждом основании равны и углы при разных основаниях...
В геометрии
гиробифастигиум или двускатный повёрнутый бикупол является 26-м многогранником Джонсона (J26). Его можно построить объединением двух треугольных призм с правильными гранями по соответствующим квадратным граням с поворотом одной призмы на 90º . Это единственное тело Джонсона, которым можно заполнить трёхмерное пространство.
Треуго́льный парке́т (треугольный паркета́ж) или треугольная мозаика — это замощение плоскости равными правильными треугольниками, расположенными сторона к стороне.
В геометрии
плосконосый двуклиноид или сиамский додекаэдр — это трёхмерный выпуклый многогранник с двенадцатью правильными треугольниками в качестве граней. Многогранник не является правильным, поскольку в некоторых вершинах сходятся четыре грани, а в остальных — пять граней. Многогранник является двенадцатигранником, одним из восьми дельтаэдров (выпуклых многогранников с гранями в виде правильных треугольников) и одним из 92 многогранников Джонсона (неоднородные выпуклые многогранники с правильными...