Понятия со словом «геометрически»
Связанные понятия
Десятиуго́льник (правильный десятиугольник — декагон) — многоугольник с десятью углами и десятью сторонами.
Апейрогон (от др.-греч. ἄπειρος — бесконечный или безграничный и др.-греч. γωνία — угол) — обобщённый многоугольник со счётно-бесконечным числом сторон.
Многогранник, многоугольник или мозаика является изотоксальным или рёберно транзитивным, если его симметрии действуют транзитивно на его рёбрах. Неформально это означает, что имеется только один вид рёбер у объекта — если даны два ребра, существует параллельный перенос, вращение и/или зеркальное отражение, переводящее одно ребро в другое, не меняя область, занимаемую объектом.
Подробнее: Изотоксальная фигура
Изогона́льное сопряже́ние — геометрическое преобразование, получаемое отражением прямых, соединяющих исходные точки с вершинами заданного треугольника относительно биссектрис углов треугольника.
Правильный n-мерный многогранник —
многогранники n-мерного евклидова пространства, которые являются наиболее симметричными в некотором смысле.
В геометрии призматический однородный многогранник — это однородный многогранник с диэдральной симметрией. Они образуют два бесконечных семейства, однородные призмы и однородные антипризмы. Все они имеют вершины на двух параллельных плоскостях, а потому все они являются призматоидами.
Многогранник или полиэдр — обычно замкнутая поверхность, составленная из многоугольников, но иногда так же называют тело, ограниченное этой поверхностью.
Правильный (или равносторонний) треугольник — это правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.
В геометрии
японская теорема утверждает, что центры окружностей, вписанных в определённые треугольники внутри вписанного в окружность четырёхугольника, являются вершинами прямоугольника.
Описанное коническое сечение или описанная коника для треугольника — это коническое сечение, проходящее через три вершины треугольника, а вписанное коническое сечение или вписанная коника — это вписанное в треугольник коническое сечение, т.е. касающееся сторон треугольника (возможно, не самих сторон, а их продолжений) Пусть даны три различные точки A,B,C, не лежащие на одной прямой, и пусть ΔABC — треугольник, имеющий эти точки в качестве вершин. Обычно считается, что буква, например A, обозначает...
Равносторонний многоугольник — многоугольник, у которого все стороны равны. Например, равносторонний треугольник — это треугольник, у которого все три стороны одинаковы; все равносторонние треугольники подобны и имеют внутренние углы 60 градусов. Равносторонний четырёхугольник — это ромб, и квадрат является частным случаем ромба.
Стереометрия (от др.-греч. στερεός, «стереос» — «твёрдый, объёмный, пространственный» и μετρέω, «метрео» — «измеряю») — раздел евклидовой геометрии, в котором изучаются свойства фигур в пространстве. Основными (простейшими) фигурами в пространстве являются точки, прямые и плоскости.
Гиперокта́эдр — геометрическая фигура в n-мерном евклидовом пространстве: правильный политоп, двойственный n-мерному гиперкубу. Другие названия: кокуб, ортоплекс, кросс-политоп.
Растянутый многоугольник серединных точек вписанного многоугольника P — это другой вписанный в ту же самую окружность многоугольник, вершины которого являются серединами дуг между вершинами многоугольника P. Многоугольник может быть получен из серединного многоугольника (многоугольника, вершины которого лежат в серединах сторон), если провести радиусы из центра окружности через вершины серединного многоугольника.
В геометрии пространственный многоугольник — это многоугольник, вершины которого не компланарны. Пространственные многоугольники должны иметь по меньшей мере 4 вершины. Внутренняя поверхность таких многоугольников однозначно не определяется.
В геометрии семиугольная мозаика — это правильная мозаика на гиперболической плоскости. Она представляется cимволом Шлефли {7,3} и имеет три правильных семиугольника в каждой вершине.
В евклидовой геометрии равнодиагональный четырёхугольник — это выпуклый четырёхугольник, две диагонали которого имеют равные длины. Равнодиагональные четырёхугольники имели важное значение в древней индийской математике, где в классификации в первую очередь выделялись равнодиагональные четырёхугольники, и только потом четырёхугольники подразделялись на другие типы .
В геометрии политоп (многогранник, многоугольник или замощение, например) изогонален или вершинно транзитивен, если, грубо говоря, все его вершины эквивалентны. Отсюда следует, что все вершины окружены одним и тем же видом граней в том же самом (или обратном) порядке и с теми же самыми углами между соответствующими гранями.
Подробнее: Изогональная фигура
Существует единственное аффинное преобразование, которое переводит правильный треугольник в данный треугольник.
Подробнее: Эллипс Штейнера
Пра́вильный шестнадцатияче́йник, или просто шестнадцатияче́йник — один из правильных многоячейников в четырёхмерном пространстве. Известен также под другими названиями: гексадекахор (от др.-греч. ἕξ — «шесть», δέκα — «десять» и χώρος — «место, пространство»), четырёхмерный гиперокта́эдр (поскольку является аналогом трёхмерного октаэдра), четырёхмерный кокуб (поскольку двойственен четырёхмерному гиперкубу), четырёхмерный ортоплекс.
Подробнее: Шестнадцатиячейник
Двойственная кривая (или дуальная кривая) к заданной кривой на проективной плоскости — это кривая на двойственной проективной плоскости, состоящая из касательных к заданной гладкой кривой. В этом случае кривые называются взаимно двойственными (дуальными). Понятие может быть обобщено для негладких кривых и на многомерное пространство.
Серединный многоугольник (многоугольник Казнера) — многоугольник, вершинами которого являются середины рёбер исходного многоугольника.
Гипоцикло́ида (от греческих слов ὑπό — под, внизу и κύκλος — круг, окружность) — плоская кривая, образуемая точкой окружности, катящейся по внутренней стороне другой окружности без скольжения.
Выпуклый многогранник — частный случай многогранника, пересечение конечного числа замкнутых полупространств.
Полудодекаэдр (англ. hemi-dodecahedron) — абстрактный правильный многогранник, содержащий половину граней правильного додекаэдра. Данный многогранник можно представить в виде проективного многогранника (замощение вещественной проективной плоскости шестью пятиугольниками), который можно изобразить при построении проективной плоскости в виде полусферы, где противоположные точки вдоль границы соединены и разбивают полусферу на три равные части.
Усечённый кубооктаэдр, усечённый кубоктаэдр — полуправильный многогранник (архимедово тело) с 12 квадратными гранями, 8 гранями в виде правильного шестиугольника, 6 гранями в виде правильного восьмиугольника, 48 вершинами и 72 рёбрами. Поскольку каждая из граней многогранника имеет центральную симметрию (что эквивалентно повороту на 180°), усечённый кубооктаэдр является зоноэдром.
Гиперциклы через заданную точку, имеющие одну и ту же касательную в этой точке, сходятся к орициклу по мере стремления расстояния к бесконечности.
Описанный многоугольник, известный также как тангенциальный многоугольник — это выпуклый многоугольник, который содержит вписанную окружность. Это окружность, которая касательна каждой стороны многоугольника. Двойственный многоугольник описанного многоугольника — это многоугольник, который имеет описанную окружность, проходящую через все его вершины.
При́зма (лат. prisma от др.-греч. πρίσμα «нечто отпиленное») — многогранник, две грани которого являются конгруэнтными (равными) многоугольниками, лежащими в параллельных плоскостях, а остальные грани — параллелограммами, имеющими общие стороны с этими многоугольниками.
В геометрии треугольная призма — это призма с тремя боковыми гранями. Этот многогранник имеет в качестве граней треугольное основание, его копию, полученную в результате параллельного переноса и 3 грани, соединяющие соответствующие стороны. Прямая треугольная призма имеет прямоугольные боковые стороны, в противном случае призма называется косой.
Окта́эдр (греч. οκτάεδρον от οκτώ «восемь» + έδρα «основание») — многогранник с восемью гранями.
Тетра́эдр (др.-греч. τετρά-εδρον — четырёхгранник, от др.-греч. τέσσᾰρες, τέσσερες, τέττᾰρες, τέττορες, τέτορες — «четыре» + др.-греч. ἕδρα — «седалище, основание») — простейший многогранник, гранями которого являются четыре треугольника, треугольная пирамида. У тетраэдра 4 грани, 4 вершины и 6 рёбер. Тетраэдр, у которого все грани — равносторонние треугольники, называется правильным. Правильный тетраэдр является одним из пяти правильных многогранников.
В геометрии n-угольный
осоэдр — это такая мозаика из двуугольников на сферической поверхности, что каждый такой двуугольник имеет две общие вершины (противоположные точки сферы) с другими двуугольниками.
Фасета в геометрии — элемент многогранника или связанной геометрической структуры, как правило на единицу меньшей размерности самой структуры.
Вписанный четырёхугольник — это четырёхугольник, вершины которого лежат на одной окружности. Эта окружность называется описанной. Обычно предполагается, что четырёхугольник выпуклый, но бывают и самопересекающиеся вписанные четырёхугольники. Формулы и свойства, данные ниже, верны только для выпуклых четырёхугольников.
Окружность Аполло́ния — геометрическое место точек плоскости, отношение расстояний от которых до двух заданных точек — величина постоянная, не равная единице.
Пра́вильный стодвадцатияче́йник, или просто стодвадцатияче́йник — один из правильных многоячейников в четырёхмерном пространстве. Известен также под другими названиями: гекатоникосахор (от др.-греч. ἑκατόν — «сто», εἴκοσι — «двадцать» и χώρος — «место, пространство»), гипердодека́эдр (поскольку является четырёхмерным аналогом додекаэдра), додекаплекс (то есть «комплекс додекаэдров»), полидодека́эдр. Двойственен шестисотячейнику.
Подробнее: Стодвадцатиячейник
Замощение Фодерберга — замощение плоскости одинаковыми (конгруэнтными) девятиугольными плитками особой формы по спирали без промежутков и перекрытий. Первое открытое спиральное замощение; найдено в 1936 году немецким математиком Хайнцем Фодербергом (Heinz Voderberg, 1911—1942).
Прямоугольник — четырехугольник, у которого все углы прямые (равны 90 градусам).
Параллелогра́мм (др.-греч. παραλληλόγραμμον от παράλληλος — параллельный и γραμμή — линия) — это четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых. Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.