Связанные понятия
В геометрии четырёхска́тный ку́пол — это один из многогранников Джонсона (J4 = (по Залгаллеру) М5). Его можно получить как срез ромбокубооктаэдра. Как и у всех куполов, многоугольник в основании имеет удвоенное число рёбер и вершин по сравнению с верхним многоугольником. В нашем случае основанием является восьмиугольник.
В геометрии
гиробифастигиум или двускатный повёрнутый бикупол является 26-м многогранником Джонсона (J26). Его можно построить объединением двух треугольных призм с правильными гранями по соответствующим квадратным граням с поворотом одной призмы на 90º . Это единственное тело Джонсона, которым можно заполнить трёхмерное пространство.
Пятиугольная антипризма — это третья в бесконечном ряду антипризм, образованных чётным набором треугольных сторон и закрытых с обеих сторон двумя многоугольниками. Она состоит из двух пятиугольников, связанных друг с другом кольцом из 10 треугольников, что даёт в сумме 12 граней. Таким образом, многогранник является неправильным додекаэдром.
В геометрии
трёхскатный купол представляет собой один из многогранников Джонсона (J3 = (по Залгаллеру) М4). Купол можно рассматривать как половину кубооктаэдра.
Большой ромбогексаэдр — это невыпуклый однородный многогранник. Двойственным ему является большой ромбогексакрон. Вершинная фигура — самопересекающийся четырёхугольник.
В геометрии правильный косой многогранник — это обобщение множества правильных многогранников, которое включает возможность непланарных граней или вершинных фигур. Коксетер рассматривал косые вершинные фигуры, которые создавали новые четырёхмерные правильные многогранники, а много позднее Бранко Грюнбаум рассматривал правильные косые грани.
Пра́вильный шестисотяче́йник, или просто шестисотяче́йник, или гекзакосихор (от др.-греч. ἑξἀκόσιοι — «шестьсот» и χώρος — «место, пространство»), — один из правильных многоячейников в четырёхмерном пространстве. Двойственен стодвадцатиячейнику.
Подробнее: Шестисотячейник
Ромботриаконтáэдр( от греч. τριάκοντα (греч. τριάντα) — «тридцать» и εδρον — «грань») — выпуклый тридцатигранник с одинаковыми ромбическими гранями. Относится к каталановым телам. Является двойственным по отношению к икосододекаэдру и зоноэдром.
Подробнее: Ромботриаконтаэдр
Апейрогон (от др.-греч. ἄπειρος — бесконечный или безграничный и др.-греч. γωνία — угол) — обобщённый многоугольник со счётно-бесконечным числом сторон.
В евклидовой геометрии равнодиагональный четырёхугольник — это выпуклый четырёхугольник, две диагонали которого имеют равные длины. Равнодиагональные четырёхугольники имели важное значение в древней индийской математике, где в классификации в первую очередь выделялись равнодиагональные четырёхугольники, и только потом четырёхугольники подразделялись на другие типы .
Пра́вильный стодвадцатияче́йник, или просто стодвадцатияче́йник — один из правильных многоячейников в четырёхмерном пространстве. Известен также под другими названиями: гекатоникосахор (от др.-греч. ἑκατόν — «сто», εἴκοσι — «двадцать» и χώρος — «место, пространство»), гипердодека́эдр (поскольку является четырёхмерным аналогом додекаэдра), додекаплекс (то есть «комплекс додекаэдров»), полидодека́эдр. Двойственен шестисотячейнику.
Подробнее: Стодвадцатиячейник
Треугольная бипирамида — это вид шестигранника, первый многогранник в бесконечной последовательности гранетранзитивных бипирамид. Многогранник двойственен треугольной призме.
Ромбокубооктаэдр или ромбокубоктаэдр — полуправильный многогранник, гранями которого являются 18 квадратов и 8 треугольников. Также называется малым ромбокубооктаэдром.
Равносторонний многоугольник — многоугольник, у которого все стороны равны. Например, равносторонний треугольник — это треугольник, у которого все три стороны одинаковы; все равносторонние треугольники подобны и имеют внутренние углы 60 градусов. Равносторонний четырёхугольник — это ромб, и квадрат является частным случаем ромба.
Огранка является обратным или двойственным образованию звёздчатой формы. Для каждой звёздчатой формы некоторого выпуклого многогранника существует двойственная огранка двойственного многогранника.
Многогранник, многоугольник или мозаика является изотоксальным или рёберно транзитивным, если его симметрии действуют транзитивно на его рёбрах. Неформально это означает, что имеется только один вид рёбер у объекта — если даны два ребра, существует параллельный перенос, вращение и/или зеркальное отражение, переводящее одно ребро в другое, не меняя область, занимаемую объектом.
Подробнее: Изотоксальная фигура
Плосконосый многогранник — это многогранник, полученный альтернированием (частичным усечением) соответствующего всеусечённого или усечённого многогранника, в зависимости от определения. Некоторые (не все) авторы включают в плосконосые многогранники антипризмы, так как они получаются таким построением из вырожденного «многогранника» всего с двумя гранями (диэдра).
Семиуго́льник , называемый иногда гептагон — многоугольник с семью углами. Семиугольником также называют всякий предмет такой формы.
Растяжение правильного многомерного многогранника образует однородный политоп, но операция может быть применена к любому выпуклому политопу, как продемонстрировано для многогранников в статье «Нотация Конвея для многогранников». В случае трёхмерных многогранников растянутый многогранник имеет все грани исходного многогранника, все грани двойственного многогранника и дополнительные квадратные грани на месте исходных рёбер.
Наибольший многоугольник единичного диаметра — многоугольник с n сторонами (для заданного числа n), диаметр которого равен единице (то есть любые две его точки находятся друг от друга на расстоянии, не превосходящем единицы), и имеющий наибольшую площадь среди других n-угольников диаметра единица. Решением (не уникальным) для n = 4 является квадрат, решением для нечётных n является правильный многоугольник, при этом для остальных чётных n правильный многоугольник наибольшим не будет.
Блоковый многогранник — это (многомерный) многогранник, образованный из симплекса путём многократного приклеивания другого симплекса к одной из его фасет.
Флаг в геометрии многогранников — последовательность граней (различной размерности) абстрактного многогранника, в которой каждая предыдущая грань содержится в последующей и последовательность содержит ровно по одной грани каждой размерности.
Идеальный треугольник — треугольник в геометрии Лобачевского, все три вершины которого являются идеальными, или бесконечно удалёнными, точками. Идеальные треугольники иногда называют трижды асимптотическими треугольниками. Их вершины иногда называют идеальными вершинами. Все идеальные треугольники равны.
Ромбоикосододекаэдр — полуправильный многогранник, состоящий из 12 правильных пятиугольников, 30 квадратов и 20 треугольников. Имеет икосаэдрический тип симметрии. В каждой из вершин сходятся треугольник, пятиугольник и 2 квадрата.
Одиннадцатиуго́льник , называемый иногда Гендекаго́н — многоугольник с одиннадцатью углами. Одиннадцатиугольником также называют всякий предмет, имеющий такую форму.
Описанный многоугольник , известный также как тангенциальный многоугольник — это выпуклый многоугольник, который содержит вписанную окружность. Это окружность, которая касательна каждой стороны многоугольника. Двойственный многоугольник описанного многоугольника — это многоугольник, который имеет описанную окружность, проходящую через все его вершины.
Девятигранник (иногда используется название эннеаэдр) — это многогранник с девятью гранями. Существует 2606 видов выпуклых девятигранников, каждый из которых имеет свою отличную конфигурацию вершин, рёбер и граней. Ни один из этих многогранников не является правильным.
Пра́вильный икоса́эдр (от др.-греч. εἴκοσι «двадцать»; ἕδρον «сиденье», «основание») — правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12.
Сфери́ческий сегме́нт — поверхность, часть сферы, отсекаемая от неё некоторой плоскостью. Плоскость отсекает два сегмента: меньший сегмент называется также сферическим кругом.
Центрированное квадратное число — это центрированное полигональное число, которое представляет квадрат с точкой в центре и все остальные окружающие точки, находящиеся на квадратных слоях.
Гипотеза Тёплица , также известная как гипотеза о вписанном квадрате — нерешённая проблема геометрии. Формулировка гипотезы...
В геометрии число Хееша фигуры — это максимальное число слоёв копий той же фигуры, которые могут её окружать. Задача Хееша — это задача определения набора чисел, которые могут быть числами Хееша. И то, и другое названы именем немецкого геометра Генриха Хееша , который нашёл мозаику с числом Хееша 1 (объединение квадрата, правильного треугольника и треугольника с углами 30-60-90) и предложил более общую задачу.
Четырёхугольник Саккери — четырёхугольник с двумя равными сторонами, которые перпендикулярны основанию. Он назван в честь Саккери, который использовал его в своей книге Euclides ab omni naevo vindicatus, впервые опубликованой в 1733, при попытке доказать пятый постулат, используя метод от противного. В конце 11 века четырёхугольник Саккери был рассмотрен Омар Хайямом.В четырёхугольнике Саккери ABCD стороны AD и BC равны по длине и перпендикулярны к основанию АВ. Углы при С и D называются верхними...
В визуализации графов и геометрической теории графов число наклонов графа — это минимальное возможное число различных коэффициентов наклона рёбер в рисунке графа, в котором вершины представляются точками евклидовой плоскости, а рёбрами являются отрезки, которые не проходят через вершины, неинцидентные этим рёбрам.
Подробнее: Число наклонов графа
Упаковка тетраэдров — это задача расположения одинаковых правильных тетраэдров в трёхмерном пространстве так, чтобы заполнить как можно большую долю пространства.
Группы
сферической симметрии также называются точечными группами в трёхмерном пространстве, однако эта статья рассматривает только конечные симметрии.
Симплициальная (или комбинаторная) d-сфера — это симплициальный комплекс, гомеоморфный d-мерной сфере. Некоторые симплициальные сферы появляются как границы выпуклого многогранника, однако в более высоких размерностях большинство симплициальных сфер не может быть получено таким образом.
Существует два определения хирального многогранника. По одному определению — это многогранник в прямом смысле хиральности (или "зеркальной симметричности"), то есть, что многогранник не имеет зеркальной симметрии. По этому определению многогранник, у которого отсутствует любая симметрия, вообще будет примером хирального многогранника.
Подробнее: Хиральный многогранник
В геометрии конциклическими (или гомоциклическими) точками называют точки, находящиеся на одной окружности. Три точки на плоскости, не лежащие на одной прямой, всегда лежат на одной окружности, поэтому иногда термин «конциклические» прилагают только к наборам из 4 или более точек.
Подробнее: Конциклические точки
В теории чисел квадратным треугольным числом (или треугольным квадратным числом) называется число, являющееся как треугольным, так и квадратным.
Подробнее: Квадратное треугольное число
В планиметрии изотоми́ческим сопряже́нием называется одно из преобразований плоскости, порождаемое заданным на плоскости треугольником ABC.
Подробнее: Изотомическое сопряжение