Связанные понятия
Статисти́ческая фи́зика — это раздел теоретической физики, посвященный изучению систем с произвольным (часто — бесконечным или несчетным) числом степеней свободы. Изучаемые системы могут быть как классическими, так и квантовыми.
Статистическая механика — раздел статистической физики, изучающий методами теории вероятностей поведение систем (произвольного) конечного числа частиц. Число частиц является произвольным конечным натуральным числом. Впервые классическую статистическую механику одной частицы рассмотрел Макс Борн в 1955 году.
Гидродина́мика (от др.-греч. ὕδωρ «вода» + динамика) — раздел физики сплошных сред, изучающий движение идеальных и реальных жидкостей и газа и их силовое взаимодействие с твёрдыми телами. Как и в других разделах физики сплошных сред, прежде всего осуществляется переход от реальной среды, состоящей из большого числа отдельных атомов или молекул, к абстрактной сплошной среде, для которой и записываются уравнения движения.
Физи́ческая кине́тика (др.-греч. κίνησις — движение) — микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классической статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внешних полей. В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, кинетика исходит из представления о молекулярном строении рассматриваемых...
Химическая кинетика или кинетика химических реакций — раздел физической химии, изучающий закономерности протекания химических реакций во времени, зависимости этих закономерностей от внешних условий, а также механизмы химических превращений.
Упоминания в литературе
Параллельно с
термодинамикой получила развитие молекулярно-кинетическая теория, изучающая макроскопические проявления систем как результаты суммарного действия совокупности хаотически движущихся молекул. В отличие от термодинамики, для которой очень важны точные и конкретные показатели, поскольку от этого зависит работоспособность системы, в молекулярно-кинетической теории принято пользоваться статистическим методом, который сводит все показатели к среднестатистическим величинам.
Мне кажется, что особую роль в мировом эволюционном процессе играет принцип минимума диссипации энергии. Сформулирую его следующим образом: если допустимо не единственное состояние системы (процесса), а целая совокупность состояний, согласных с законами сохранения и связями, наложенными на систему (процесс), то реализуется то ее состояние, которому отвечает минимальное рассеяние энергии, или, что то же самое, минимальный рост энтропии. Этот принцип следует рассматривать в качестве некоторого «эмпирического обобщения». По своей формулировке он похож на принцип минимума потенциала рассеяния Л. Оисагера (1931 г.) и принцип минимума производства энтропии И. Пригожина (1946 г.), которые были сформулированы для проблем неравновесной
термодинамики . Но он не выводится из последних. Позднее мы еще вернемся к обсуждению соотношения этих принципов.
Я думаю, что принцип минимума диссипации энергии есть всего лишь очень частный случай значительно более общего принципа «экономии энтропии». В природе все время возникают структуры, в которых энтропия не только не растет, но и локально уменьшается. Этим свойством обладают многие открытые системы, в том числе и живые, где за счет притока извне вещества и энергии возникают более или менее стабильные состояния – «квазиравновесные структуры». С точки зрения классической
термодинамики эти образования не являются равновесными – равновесие здесь лишь понимается в смысле стационарности.
Основное понятие синергетики − определение структуры как состояния, возникающего в результате многовариантного и неоднозначного поведения таких многоэлементных структур или многофакторных сред, которые не деградируют к стандартному для замкнутых систем усреднению термодинамического типа, а развиваются вследствие открытости, притока энергии извне, нелинейности внутренних процессов, появления особых режимов с обострением и наличия более одного устойчивого состояния. В обозначенных системах неприменимы ни второе начало
термодинамики , ни теорема Пригожина о минимуме скорости производства энтропии, что может привести к образованию новых структур и систем, в том числе и более сложных, чем исходные. В отдельных случаях образование новых структур имеет регулярный, волновой характер, и тогда они называются автоволновыми процессами (по аналогии с автоколебаниями).
Исследования процессов сохранения и превращения энергии привели к открытию еще одного закона – закона возрастания энтропии. «Переход теплоты от более холодного тела к более теплому, – писал Р. Клаузиус, – не может иметь места без компенсации»[5]. Меру способности теплоты к превращению Клаузиус назвал энтропией. Суть энтропии выражается в том, что во всякой изолированной системе процессы должны протекать в направлении превращения всех видов энергии в теплоту при одновременном уравнивании температурных разностей, существующих в системе. Это означает, что реальные физические процессы протекают необратимо. Принцип, утверждающий стремление энтропии к максимуму, называют вторым началом
термодинамики . Первое начало – закон сохранения и превращения энергии.
Связанные понятия (продолжение)
Хими́ческая термодина́мика — раздел физической химии, изучающий процессы взаимодействия веществ методами термодинамики. Применение термодинамического подхода к химическим реакциям основано на том, что в фундаментальном уравнении Гиббса в качестве переменных можно использовать как массы или количества независимых компонентов, — если условия задачи не требуют детального рассмотрения химического равновесия, — так и массы (количества) составляющих веществ совместно с уравнениями связи, описывающими химические...
Меха́ника сплошны́х сред — раздел механики, физики сплошных сред и физики конденсированного состояния, посвящённый движению газообразных, жидких и деформируемых твёрдых тел, а также силовым взаимодействиям в таких телах.
Молекулярная физика — раздел физики, который изучает физические свойства тел на основе рассмотрения их молекулярного строения. Задачи молекулярной физики решаются методами статистической механики, термодинамики и физической кинетики, они связаны с изучением движения и взаимодействия частиц (атомов, молекул, ионов), составляющих физические тела.
Ква́нтовая меха́ника — раздел теоретической физики, описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка. Предсказания квантовой механики могут существенно отличаться от предсказаний классической механики. Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием объектов при макроскопическом движении, квантовые эффекты в основном проявляются в микроскопических масштабах. Если физическое действие системы намного больше постоянной...
Молекулярная теория (сокращённо МТ) — теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений...
Фа́зовый перехо́д (фазовое превращение) в термодинамике — переход вещества из одной термодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется...
Электродина́мика — раздел физики, изучающий электромагнитное поле в наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющими электрический заряд (электромагнитное взаимодействие). Предмет электродинамики включает связь электрических и магнитных явлений, электромагнитное излучение (в разных условиях, как свободное, так и в разнообразных случаях взаимодействия с веществом), электрический ток (вообще говоря, переменный) и его взаимодействие...
Тепловой процесс (термодинамический процесс) — изменение макроскопического состояния термодинамической системы. Если разница между начальным и конечным состояниями системы бесконечно мала, то такой процесс называют элементарным (инфинитезимальным).
К критическим явлениям относятся многочисленные аномалии, наблюдающиеся в фазовых переходах второго рода, например, в точке Кюри в магнетике или в критической точке системы «жидкость-пар». Эти аномалии описываются критическими индексами. В системах появляются очень сильные флуктуации с бесконечным радиусом корреляции. При этом система существенно нелинейна.
Подробнее: Критические явления
Квантовая химия — это направление химии, рассматривающее строение и свойства химических соединений, реакционную способность, кинетику и механизм химических реакций на основе квантовой механики. Разделами квантовой химии являются: квантовая теория строения молекул, квантовая теория химических связей и межмолекулярных взаимодействий, квантовая теория химических реакций и реакционной способности и др. Квантовая химия находится на стыке химии и квантовой физики (квантовой механики). Она занимается рассмотрением...
Термодинамическая система — тело (совокупность тел), способное (способных) обмениваться с другими телами (между собой) энергией и (или) веществом; выделяемая (реально или мысленно) для изучения макроскопическая физическая система, состоящая из большого числа частиц и не требующая для своего описания привлечения микроскопических характеристик отдельных частиц, «часть Вселенной, которую мы выделяем для исследования». Единицей измерения числа частиц в термодинамической системе обычно служит число Авогадро...
Энтропи́я (от др.-греч. ἐν «в» + τροπή «обращение; превращение») — широко используемый в естественных и точных науках термин. Впервые введён в рамках термодинамики как функция состояния термодинамической системы. Энтропия определяет меру необратимого рассеивания энергии или бесполезности энергии, ибо не всю энергию системы можно использовать для превращения в какую-нибудь полезную работу. Для понятия энтропии в данном разделе физики используют название термодинамическая энтропия. Термодинамическая...
Термодинамическое равновесие — состояние системы, при котором остаются неизменными во времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды. В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений. Если равновесной системе соответствует несколько состояний, в каждом из которых система может находиться неопределенно долго, то о системе говорят, что она находится в...
Твёрдое тело — одно из четырёх основных агрегатных состояний вещества, отличающееся от других агрегатных состояний (жидкости, газов, плазмы) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около положений равновесия.
Сверхтеку́честь — способность вещества в особом состоянии (квантовой жидкости), возникающем при температурах, близких к абсолютному нулю (термодинамическая фаза), протекать через узкие щели и капилляры без трения. До недавнего времени сверхтекучесть была известна только у жидкого гелия, однако в последние годы сверхтекучесть была обнаружена и в других системах: в разрежённых атомных бозе-конденсатах, твёрдом гелии.
Фи́зика твёрдого те́ла — раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомного строения. Интенсивно развивалась в XX веке после открытия квантовой механики. Развитие стимулировалось широким спектром важных задач прикладного характера, в частности, развитием полупроводниковой техники.
Гидроаэродинамика или динамика флюидов — подразделение гидроаэромеханики, описывающее законы флюидов (жидкостей или газов). У нее есть несколько собственных подразделений, в частности аэродинамика (изучение движения воздуха и других газов) и гидродинамика (изучение движения жидкостей). Гидроаэродинамика имеет широкое поле применений, среди которых вычисление расхода сил и нагрузки, действующих на самолеты, определение скорости потока нефти в нефтепроводах, предсказания погоды, изучение межзвездных...
Тео́рия упру́гости — раздел механики сплошных сред, изучающий деформации упругих твёрдых тел, их поведение при статических и динамических нагрузках.
Квантовая статистика — раздел статистической механики, в котором n-частичные квантовые системы описываются методом статистических операторов комплексов частиц (редуцированными матрицами плотности). Число частиц n может быть произвольным натуральным (конечным) числом или бесконечностью.
Сплошна́я среда ́ — механическая система, обладающая бесконечным числом внутренних степеней свободы. Её движение в пространстве, в отличие от других механических систем, описывается не координатами и скоростями отдельных частиц, а скалярным полем плотности и векторным полем скоростей. В зависимости от задач, к этим полям могут добавляться поля других физических величин (концентрация, температура, поляризованность и др.)
Ква́нтовая фи́зика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Основные законы квантовой физики изучаются в рамках квантовой механики и квантовой теории поля и применяются в других разделах физики.
Ква́нтовая жи́дкость — жидкость, свойства которой определяются квантовыми эффектами. Вблизи абсолютного нуля согласно представлениям классической физики, движение атомов должно останавливаться и вещество должно превращаться в кристалл, чего не происходит с некоторыми веществами с малой атомной массой, большой нулевой энергией (и, соответственно, значительными нулевыми колебаниями) и слабым взаимодействием между атомами — то, что они остаются жидкостями, обусловлено квантовыми эффектами, препятствующими...
Атомная физика — раздел физики, изучающий строение и свойства атомов. Атомная физика возникла в конце XIX — начале XX века в результате экспериментов, установивших, что атом представляет собой систему из положительно заряженного ядра и отрицательно заряженных электронов, и получила своё развитие в связи с созданием квантовой механики, объяснившей структуру атома. Строение атомного ядра изучается в ядерной физике.
Класси́ческая меха́ника — вид механики (раздела физики, изучающего законы изменения положений тел в пространстве со временем и причины, его вызывающие), основанный на законах Ньютона и принципе относительности Галилея. Поэтому её часто называют «ньютоновой механикой».
Математи́ческая моде́ль — математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.
Необратимым называется
процесс , который нельзя провести в противоположном направлении через все те же самые промежуточные состояния. Все реальные процессы необратимы. Примеры необратимых процессов: диффузия, термодиффузия, теплопроводность, вязкое течение и др. Переход кинетической энергии макроскопического движения через трение в теплоту, то есть во внутреннюю энергию системы, является необратимым процессом. Законы необратимых процессов могут быть обоснованы с помощью методов электрокинетической...
Тео́рия относи́тельности — физическая теория пространства-времени, то есть теория, описывающая универсальные пространственно-временные свойства физических процессов.
Пе́рвое нача́ло термодина́мики (первый закон термодинамики) — один из основных законов этой дисциплины, представляющий собой конкретизацию общефизического закона сохранения энергии для термодинамических систем, в которых необходимо учитывать термические, массообменные и химические процессы. В форме закона сохранения (уравнения баланса энергии) первое начало используют в термодинамике потока и в неравновесной термодинамике. В равновесной термодинамике под первым законом термодинамики обычно подразумевают...
Уравне́ние состоя́ния — соотношение, отражающее для конкретного класса термодинамических систем связь между характеризующими её макроскопическими физическими величинами, такими как температура, давление, объём, химический потенциал, энтропия, внутренняя энергия, энтальпия и др. Уравнения состояния необходимы для получения с помощью математического аппарата термодинамики конкретных результатов, касающихся рассматриваемой системы. Эти уравнения не содержатся в постулатах термодинамики, так что для...
Бро́уновское движе́ние (бра́уновское движе́ние) — беспорядочное движение микроскопических видимых взвешенных в жидкости или газе частиц твёрдого вещества, вызываемое тепловым движением частиц жидкости или газа. Было открыто в 1827 году Робертом Броуном (правильнее Брауном). Броуновское движение никогда не прекращается. Оно связано с тепловым движением, но не следует смешивать эти понятия. Броуновское движение является следствием и свидетельством существования теплового движения.
Гетероге́нная систе́ма (от греч. ἕτερος — разный; γένω — рождать) — неоднородная система, состоящая из однородных частей (фаз), разделённых поверхностью раздела. Однородные части (фазы) могут отличаться друг от друга по составу и свойствам. Число веществ (компонентов), термодинамических фаз и степеней свободы связаны правилом фаз. Фазы гетерогенной системы можно отделить друг от друга механическими методами (отстаиванием, фильтрованием, магнитной сепарацией и т. п.). Примерами гетерогенных систем...
Макроскопи́ческий масшта́б представляет собой масштаб длины, на котором объекты или процессы имеют размеры, поддающиеся измерению и наблюдению невооруженным глазом.
Магнитная гидродинамика — физическая дисциплина, возникшая на пересечении гидродинамики и электродинамики сплошной среды. Предметом её изучения является динамика проводящей жидкости или газа в магнитном поле. Примерами изучаемых сред являются различного рода плазма, жидкие металлы, солёная вода.
Пове́рхностные явле́ния — совокупность явлений, обусловленных особыми свойствами тонких слоёв вещества на границе соприкосновения фаз. К поверхностным явлениям относятся процессы, происходящие на границе раздела фаз, в межфазном поверхностном слое и возникающие в результате взаимодействия сопряжённых фаз.
Дина́мика (греч. δύναμις «сила, мощь») — раздел механики, в котором изучаются причины возникновения механического движения. Динамика оперирует такими понятиями, как масса, сила, импульс, момент импульса, энергия.
Теория колебаний — теория, рассматривающая всевозможные колебания, абстрагируясь от их физической природы. Для этого используется аппарат дифференциального исчисления.
Теория функционала плотности (англ. density functional theory, DFT) — метод расчёта электронной структуры систем многих частиц в квантовой физике и квантовой химии. В частности, применяется для расчёта электронной структуры молекул и конденсированного вещества. Является одним из наиболее широко используемых и универсальных методов в вычислительной физике и вычислительной химии. Твёрдое тело рассматривается как система, состоящая из большого числа одинаково взаимодействующих между собой электронов...
Физи́ческая хи́мия (часто в литературе сокращённо — физхимия) — раздел химии, наука об общих законах строения, структуры и превращения химических веществ. Исследует химические явления с помощью теоретических и экспериментальных методов физики. Наиболее обширный раздел химии.
Равнове́сие фаз в термодинамике — состояние, при котором фазы в термодинамической системе находятся в состоянии теплового, механического и химического равновесия.
Второе начало термодинамики (второй закон термодинамики) устанавливает существование энтропии как функции состояния термодинамической системы и вводит понятие абсолютной термодинамической температуры, то есть «второе начало представляет собой закон об энтропии» и её свойствах. В изолированной системе энтропия остаётся либо неизменной, либо возрастает (в неравновесных процессах), достигая максимума при установлении термодинамического равновесия (закон возрастания энтропии). Встречающиеся в литературе...
Зако́ны сохране́ния — фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени. Являются наиболее общими законами в любой физической теории. Имеют большое эвристическое значение.
Третье начало термодинамики (теорема Нернста, тепловая теорема Нернста) — физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю. Является одним из постулатов термодинамики, принимаемым на основе обобщения значительного количества экспериментальных данных по термодинамике гальванических элементов. Теорема сформулирована Вальтером Нернстом в 1906 году. Современная формулировка теоремы принадлежит Максу Планку.
Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда закономерность, его можно именовать не законом, а принципом сохранения...
Класси́ческая фи́зика — физика до появления квантовой теории и теории относительности. Основы классической физики были заложены в Эпоху Возрождения рядом учёных, из которых особенно выделяют Ньютона — создателя классической механики.
Вычислительная химия — раздел химии, в котором математические методы используются для расчёта молекулярных свойств, моделирования поведения молекул, планирования синтеза, поиска в базах данных и обработки комбинаторных библиотек. Вычислительная химия использует результаты классической и квантовой теоретической химии, реализованные в виде эффективных компьютерных программ, для вычисления свойств и определения структуры молекулярных систем. В квантовой химии компьютерное моделирование заменило не только...
Упоминания в литературе (продолжение)
Построенный из абсолютизированных (воображаемых) элементов схематический образ объекта познания – это и есть его теоретическая схема. Именно она подвергается далее мысленному анализу с использованием подходящих к решаемой задаче средств мышления (математики, механики,
термодинамики , квантовой механики и т. п.). Существующих средств мышления не всегда бывает достаточно и приходится разрабатывать новые средства. Так возникли и развиваются метод конечных разностей в математике, метод конечных элементов в теории упругости и др. Посредством абсолютизации фиксируются (т. е. становятся константами) переменные величины, их число уменьшается. В результате этого теоретическая схема упрощается. Такое упрощение очень важно с точки зрения применимости научных средств мышления.
Работоспособность тепла и химической энергии зависит от заданных условий протекания технологического процесса и организации процессов тепло– и массопереноса и поэтому представляет собой величину, значение которой не может быть найдено с помощью
термодинамики обратимых процессов, так как связано с кинетикой тепло– и массообмена.
Здесь и проблема вечного двигателя, сформулированная во времена отсутствия представлений о стационарных состояниях самоорганизующихся систем за пределами равновесия, которая в своей классической формулировке апеллирует к «циклу Карно», опирается на модель идеального газа (которого нет в природе). Здесь и «второе начало» классической
термодинамики , постулирующей неизбежную деградацию не только систем косной природы, но всех реальных систем, предрекая им неизбежное скольжение к состоянию хаоса по основной термодинамической ветви (процесс возрастания энтропии) и отказывая в стремлении к режиму-аттрактору неравновесной устойчивости, прежде всего для систем проточных, коими заполнен мир. Здесь и классическая теория вероятностей, которую активно используют в статистических оценках реальных процессов, невзирая на то, что основана она на постулате о независимости испытаний (в действительности, как известно, нет независимых событий, поскольку издревле известно, что «всё связано со всем»). Фантомы прошлого приобретают сегодня иное звучание и растворяются, если прибегнуть к науке о нестационарных, нелинейных, протекающих за пределами равновесия процессах.
Другим методологическим ориентиром нашего исследования является синергетический подход, который имеет универсальный, общеметодологический характер и применим для постижения закономерностей, происходящих в сложных социальных системах. Появление этого подхода связано с работами по
термодинамике неравновесных систем И.Р. Пригожина и Г. Хакена, давшего изученным им эффектам самоорганизации в лазерном излучении название «синергетика» (с греческого – совместное, согласованное действие). Синергетический подход основан на таких понятиях, как нелинейность, неустойчивость, непредсказуемость, альтернативность развития. В рамках этого подхода окружающий мир предстает как открытая система, в которой постоянно происходят циркуляция и обмен энергией, веществом, информацией. Картина этого мира описывается в терминах постоянной изменчивости, глубинной взаимосвязи случайности и необходимости, хаоса и порядка. При подобном состоянии открытых систем возникает необходимость выбора направления движения или вектора развития. Одним из важных принципов синергетики выступает принцип нелинейности, предполагающий множественность путей развития или эволюции. С принципом нелинейности сложных открытых систем связана их возможность саморазвития и самоорганизации. Считается, что сложная открытая система может сама себя строить, структурировать, вносить коррективы и изменения. Однако при этом подтверждается важность правильного инициирования тенденций саморазвития системы. Есть определенная область параметров или стадий, где нелинейная сложная открытая система особенно чувствительна к воздействиям, согласованным с ее внутренними свойствами, что обозначается как «резонансное воздействие». Теория резонансного воздействия свидетельствует о том, что важна не сила воздействия, а его правильная пространственная организация, или симметрия, тогда даже слабое воздействие эффективно.
Изменение внутренней энергии системы ?E обуслов–лено работой W, которая совершается при взаимодейст–вии системы со средой, и обмен теплотой Q между средой и системой, отношение между этими величинами состав–ляет содержание первого начала
термодинамики .
Достигнутое соответствие, разумеется, представлялось более чем удовлетворительным для тех, кто его достиг. За исключением некоторых проблем движения Земли, ни одна другая теория не могла достигнуть подобного согласия с экспериментами. Ни один из тех, кто сомневался в обоснованности труда Ньютона, не делал этого в силу того, что этот труд был недостаточно согласован с экспериментом и наблюдением. Тем не менее ограниченность данного соответствия оставляла множество заманчивых теоретических проблем для последователей Ньютона. Например, требовались особые теоретические методы для истолкования движения более чем двух одновременно притягивающихся тел и исследования стабильности орбит при возмущениях. Проблемами, подобными этим, были заняты многие лучшие европейские мыслители на протяжении XVIII и начала XIX веков. Эйлер, Лагранж, Лаплас и Гаусс посвятили свои самые блестящие работы совершенствованию соответствия между парадигмой и наблюдением небесных явлений. Многие из этих мыслителей в то же время работали над прикладными проблемами применения математики в областях, о которых не могли думать ни сам Ньютон, ни его современники из континентальной школы механиков. Они написали множество работ и развили весьма мощный математический аппарат для гидродинамики и для решения проблемы колебания струны. В процессе решения этих прикладных проблем была осуществлена, вероятнее всего, наиболее блестящая и трудоемкая из научных работ XVIII столетия. Другие примеры можно почерпнуть из обзора постпарадигмального периода в развитии
термодинамики , волновой теории света, электромагнитной теории или других отраслей науки, в которых фундаментальные законы получили законченное количественное выражение. По крайней мере в наиболее математизированных науках основная часть теоретической работы состояла именно в этом.
Новое видение мира культурных изменений открыла синергетика (по Г. Хакену, И. Р. При—гожину). Это комплексное научное направление, вобравшее в себя достижения неравновесной
термодинамики , теории управления, теории сложных систем и информации. Синергетика радикально изменила понимание отношений между порядком и хаосом. В ее рамках состояние хаоса стало представляться как переходное от одного уровня упорядоченности к другому. В синергетике большое внимание уделяется феномену, нелинейности, которая характеризуется многообразием процессов, типов траекторий развития. В синергетике развитие осуществляется через неустойчивость, новое появляется как непредсказуемое, но имеющееся в спектре возможных состояний, настоящее не только определяется прошлым, но формируется из будущего.
Ознакомление студентов с табличной и графической подачей модульного структурирования дисциплины «Общая и неорганическая химия» позитивно и в том отношении, что при изучении других химических дисциплин на последующих курсах будет эффективнее происходить актуализация одноименных учебных модулей. Вклад «Общей и неорганической химии» значителен в модули Программы общехимических дисциплин для подготовки специалистов инженерно-технологических специальностей: 92,9 % вклада в модуль «Строение атома. Периодический закон Д.И. Менделеева», 87,9 % – в модуль «Химическая связь», 41 % – в модули «
Термодинамика химических равновесий», «Химическое равновесие», «Поверхностные явления. Фазовые равновесия. Растворы», «Химическая кинетика и катализ», «Физикохимия дисперсных систем. Полимеры» [25, с. 79].
Социокультурная обусловленность научного познания воплощается в единстве двух тесно переплетающихся аспектов: 1) зависимость от социально-экономических и духовных условий жизни общества, определяющих статус науки, импульсы к ее развитию («внешняя» социальность); 2) влияние общекультурных, мировоззренческих факторов на субъект познания – отдельных ученых, научные сообщества («внутренняя» социальность). Внешняя социальность связана с тем, что предпосылкой развития науки являются наличные экономические возможности, политические условия. Судьба тех или иных научных программ и направлений прямо зависит (особенно сейчас) от их финансирования, заинтересованности в них государства и промышленности. Известно, например, какой мощный импульс наукам (даже таким абстрактным, как математика) сообщила первая промышленная революция. Запросы производства обеспечили позже бурное развитие электротехники и
термодинамики . В наши дни перспективы таких фундаментальных отраслей, как ядерная физика или исследования космоса, непосредственно зависят не только от экономического могущества ведущих политических и научно-технических держав, все равно вынужденных объединять свой экономический и творческо-научный потенциал, но и от политического климата на планете – здесь налицо обнадеживающие сдвиги.
Проведен анализ результатов исследования ИК-фурье спектров растворов гидропероксидов третичного бутила, кумила (ГПК) и трифенилметила в различных растворителях, а также растворов ГПК в н-декане с добавлением ацетона, ацетофенона и ацетонитрила как акцепторов протона. При этом использовался факторный анализ. Выполнены квантово-химические расчеты само- и гетеро-ассоциатов ГПК. Обнаружены компенсационный и кооперативный эффекты в
термодинамике водородных связей гидропероксидов.