Связанные понятия
Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. Именно на квантовой теории поля базируется вся физика высоких энергий, физика элементарных частиц и физика конденсированного состояния. Квантовая теория поля в виде Стандартной модели (с добавкой масс нейтрино) сейчас является единственной экспериментально...
Ква́нтовая фи́зика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Основные законы квантовой физики изучаются в рамках квантовой механики и квантовой теории поля и применяются в других разделах физики.
Тео́рия относи́тельности — физическая теория пространства-времени, то есть теория, описывающая универсальные пространственно-временные свойства физических процессов.
Ква́нтовая электродина́мика (КЭД) — квантовополевая теория электромагнитных взаимодействий; наиболее разработанная часть квантовой теории поля. Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля, в основе же квантовой электродинамики лежит представление о том, что электромагнитное поле обладает также и прерывными (дискретными) свойствами, носителями которых являются кванты поля — фотоны. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается...
Статисти́ческая фи́зика — это раздел теоретической физики, посвященный изучению систем с произвольным (часто — бесконечным или несчетным) числом степеней свободы. Изучаемые системы могут быть как классическими, так и квантовыми.
Упоминания в литературе
Методологическая и одновременно онтологическая идея прерывности получила в XX веке серьезную поддержку в связи с
квантовой механикой и изучением микромира. В отличие от классических представлений, было выяснено, что энергия излучается квантами, электронные состояния образуют дискретную последовательность уровней, разрабатывались концепции квантованного пространства – времени. Хотя одновременно наряду с этим у микрочастиц были обнаружены и волновые свойства, что привело к формулировке тезиса о корпускулярно-волновом дуализме. Вообще физика и математика естествознания начиная с XVII столетия развивались в удивительной генетической близости. Уже с самого начала, как обсуждали мы выше, понятия дифференциала и касательной были специально выработаны для выражения интуиции мгновенной скорости, скорости в точке. Эта связь математики и физики оставалась прочной и в дальнейшем. Теоретико-множественная перестройка математики в XX веке оказывала характерное влияние и на физику, причем к концу столетия это влияние стало явно усиливаться. В отечественной физике появилась теория физических структур Ю. И. Кулакова, которая, по признанию самого автора, представляет собой «бурбакизацию» физики. В аналогичном же направлении разрабатывает свою теорию бинарных физических структур и Ю. С. Владимиров. Несмотря на то что философские и методологические установки этих двух авторов различны – Кулаков ориентирован на Платона, Владимиров – больше на Аристотеля, для первого важна непрерывность, а второй может обойтись и без нее, – исходная точка их рассуждений общая: некоторая теоретико-множественная конструкция[46].
2) в нерелятивистской теории принято считать, что информация, помогающая взаимодействию, передается мгновенно. Релятивистская же
квантовая механика утверждает, что взаимодействие распространяется со строго определенной скоростью. Следовательно, должно существовать что-то, что будет способствовать такой передаче. И этим «помощником» является физическое поле. Одним из основоположников квантовой механики можно назвать Планка. Он первым выступил против существовавшей в то время теории теплового излучения. В основе теории теплового излучения лежала статистическая физика и классическая электродинамика. Эти две отрасли науки не дополняли друг друга, а наоборот, приводили к противоречию всю теорию теплового излучения.
Корпускулярно-волновая действительность материи обусловила иной подход к описанию состояния физических систем и их изменения во времени.
Квантовая механика устанавливает, что не все физические величины могут одновременно иметь точное значение, а также устанавливает дискретность возможных значении многих физических величин, в классической теории эти значения величин могут меняться только непрерывно. Считается, что нерелятивистская квантовая механика (скорость движения частиц намного меньше скорости света) полностью согласуется с опытом круга явлений и процессов, в которых не происходит рождения, уничтожения или взаимопревращения частиц, т. е. согласуется с классической теорией.
Фактически такую интерпретацию развивали Эйнштейн, Планк, Шредингер и их сторонники, когда утверждали, что принципиально вероятностный характер
квантовой механики говорит о ее неполноте как физической теории. Они ориентировали физиков на поиск такой теории микроявлений, которая по своей структуре и характеру законов была бы подобна классической механике или классической электродинамике. В этом русле строилась программа развития вероятностных представлений из теории микромира путем обнаружения «скрытых параметров», т. е. таких свойств элементарных частиц, знание которых позволило бы достичь их строго однозначного описания.
Первая квантовая революция, в начале ХХ века, основывалась на открытии корпускулярно-волнового дуализма. Это открытие дало способ довольно точно описать статистическое поведение атомов, из которых состоит материя, облаков электронов, которые переносят электрический ток в металле или полупроводнике, и миллиардов и миллиардов фотонов в луче света. У нас появился инструментарий для понимания механических свойств твердых тел, в то время как классическая физика не могла объяснить, почему вещество, состоящее из положительных и отрицательных зарядов, которые притягивают друг друга, не сплющивается.
Квантовая механика дала точное количественное описание электрических и оптических свойств материалов и предложила систему концепций, необходимую для описания таких удивительных явлений, как сверхпроводимость и странные свойства определенных элементарных частиц. В эту первую квантовую революцию физики изобрели новые приборы: транзистор, лазер, интегральные схемы, благодаря чему сегодня мы живем в информационном обществе.
Связанные понятия (продолжение)
Калибро́вочная инвариа́нтность — инвариантность прогнозов физической полевой теории относительно (локальных) калибровочных преобразований — координатно-зависимых преобразований поля, описывающих переход между базисами в пространстве внутренних симметрий этого поля.
Специа́льная тео́рия относи́тельности (СТО; также называемая ча́стная тео́рия относи́тельности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света (в рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей). Фактически СТО описывает геометрию четырёхмерного пространства-времени и базируется на плоском...
Статистическая механика — раздел статистической физики, изучающий методами теории вероятностей поведение систем (произвольного) конечного числа частиц. Число частиц является произвольным конечным натуральным числом. Впервые классическую статистическую механику одной частицы рассмотрел Макс Борн в 1955 году.
О́бщая тео́рия относи́тельности (ОТО; нем. allgemeine Relativitätstheorie) — геометрическая теория тяготения, развивающая специальную теорию относительности (СТО), предложенная Альбертом Эйнштейном в 1915—1916 годах.
Класси́ческая меха́ника — вид механики (раздела физики, изучающего законы изменения положений тел в пространстве со временем и причины, его вызывающие), основанный на законах Ньютона и принципе относительности Галилея. Поэтому её часто называют «ньютоновой механикой».
Тео́рия струн — направление теоретической физики, изучающее динамику взаимодействия не точечных частиц, а одномерных протяжённых объектов, так называемых квантовых струн. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации.
Ква́нтовая гравита́ция — направление исследований в теоретической физике, целью которого является квантовое описание гравитационного взаимодействия (и, в случае успеха, — объединение таким образом гравитации с остальными тремя фундаментальными взаимодействиями, то есть построение так называемой «теории всего»).
Ква́нтовая хромодина́мика (КХД) — калибровочная теория квантовых полей, описывающая сильное взаимодействие элементарных частиц. Наряду с электрослабой теорией, КХД составляет общепринятый в настоящее время теоретический фундамент физики элементарных частиц.
Электродина́мика — раздел физики, изучающий электромагнитное поле в наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющими электрический заряд (электромагнитное взаимодействие). Предмет электродинамики включает связь электрических и магнитных явлений, электромагнитное излучение (в разных условиях, как свободное, так и в разнообразных случаях взаимодействия с веществом), электрический ток (вообще говоря, переменный) и его взаимодействие...
Фи́зика элемента́рных части́ц (ФЭЧ), часто называемая также фи́зикой высо́ких эне́ргий или субъядерной физикой — раздел физики, изучающий структуру и свойства элементарных частиц и их взаимодействия.
Суперсимме́трия или симме́трия Фе́рми — Бо́зе — гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие (или в излучение), и наоборот.
Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые на практике невозможно расщепить на составные части.
Класси́ческая фи́зика — физика до появления квантовой теории и теории относительности. Основы классической физики были заложены в Эпоху Возрождения рядом учёных, из которых особенно выделяют Ньютона — создателя классической механики.
Классическая теория поля — физическая теория о взаимодействии полей и материи, не затрагивающая квантовых явлений. Обычно различают релятивистскую и нерелятивистскую теорию поля.
Станда́ртная моде́ль — теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Стандартная модель не является теорией всего, так как не описывает тёмную материю, тёмную энергию и не включает в себя гравитацию. Экспериментальное подтверждение существования промежуточных векторных бозонов в середине 80-х годов завершило построение Стандартной модели и её принятие как основной. Необходимость незначительного расширения...
Корпускулярно-волновой дуализм (или квантово-волновой дуализм) — свойство природы, состоящее в том, что материальные микроскопические объекты могут при одних условиях проявлять свойства классических волн, а при других — свойства классических частиц.
Копенга́генская интерпрета́ция — интерпретация (толкование) квантовой механики, которую сформулировали Нильс Бор и Вернер Гейзенберг во время совместной работы в Копенгагене около 1927 года. Бор и Гейзенберг усовершенствовали вероятностную интерпретацию волновой функции, данную М. Борном, и попытались ответить на ряд вопросов, возникающих вследствие свойственного квантовой механике корпускулярно-волнового дуализма, в частности на вопрос об измерении.
Асимптоти́ческая свобо́да — физический эффект, возникающий в некоторой калибровочной теории, в которой взаимодействие между частицами, такими как кварки, становится сколь угодно малым при уменьшении расстояния между частицами. Другими словами, в асимптотическом пределе r→0 частицы перестают взаимодействовать и становятся свободными.
Перенормиро́вка в квантовой теории поля — процедура устранения ультрафиолетовых расходимостей в классе теорий, называемых перенормируемыми. С физической точки зрения соответствует изменению начальных (затравочных) лагранжианов таких теорий с тем, чтобы результирующая динамика теории не содержала сингулярностей (и совпадала с наблюдаемой, если теория претендует на описание действительности). Другими словами, перенормировка — это уточнение лагранжиана взаимодействия с той целью, чтобы он не приводил...
В физике квантова́ние — построение квантового варианта некоторой неквантовой (классической) теории или физической модели в соответствии с аксиомами квантовой физики.
Симме́три́я в широком смысле — соответствие, неизменность (инвариантность), проявляемые при каких-либо изменениях, преобразованиях (например: положения, энергии, информации, другого).
Квантовая статистика — раздел статистической механики, в котором n-частичные квантовые системы описываются методом статистических операторов комплексов частиц (редуцированными матрицами плотности). Число частиц n может быть произвольным натуральным (конечным) числом или бесконечностью.
Тео́рия всего ́ — гипотетическая объединённая физико-математическая теория, описывающая все известные фундаментальные взаимодействия. Первоначально данный термин использовался в ироническом ключе для обозначения разнообразных обобщённых теорий. Со временем термин закрепился в популяризациях квантовой физики для обозначения теории, которая объединила бы все четыре фундаментальных взаимодействий в природе. В современной научной литературе вместо термина «теория всего» как правило используется термин...
Атомная физика — раздел физики, изучающий строение и свойства атомов. Атомная физика возникла в конце XIX — начале XX века в результате экспериментов, установивших, что атом представляет собой систему из положительно заряженного ядра и отрицательно заряженных электронов, и получила своё развитие в связи с созданием квантовой механики, объяснившей структуру атома. Строение атомного ядра изучается в ядерной физике.
В физике элементарных частиц электрослабое взаимодействие является общим описанием двух из четырёх фундаментальных взаимодействий: слабого взаимодействия и электромагнитного взаимодействия. Хотя эти два взаимодействия очень различаются на обычных низких энергиях, в теории они представляются как два разных проявления одного взаимодействия. При энергиях выше энергии объединения (порядка 100 ГэВ) они соединяются в единое электрослабое взаимодействие.
Подробнее: Электрослабое взаимодействие
Электромагни́тное взаимоде́йствие — одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.
Релятивистская механика — раздел физики, рассматривающий законы механики (законы движения тел и частиц) при скоростях, сравнимых со скоростью света. При скоростях значительно меньших скорости света переходит в классическую (ньютоновскую) механику.
Супергравита́ция (от супер… и лат. gravitas — тяжесть) — обобщение общей теории относительности (ОТО) на основе суперсимметрии; или часто: многомерная супергравитация — название физических теорий, включающих дополнительные измерения, суперсимметрию и гравитацию.
Втори́чное квантова́ние (каноническое квантование) — метод описания многочастичных квантовомеханических систем. Наиболее часто этот метод применяется для задач квантовой теории поля и в многочастичных задачах физики конденсированных сред.
Ква́нтовая запу́танность — квантовомеханическое явление, при котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми (например, можно получить пару фотонов, находящихся в запутанном состоянии, и тогда если при измерении спина первой частицы спиральность оказывается положительной, то спиральность второй всегда оказывается отрицательной, и наоборот).
Зако́ны сохране́ния — фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени. Являются наиболее общими законами в любой физической теории. Имеют большое эвристическое значение.
По́ле в физике — физический объект, классически описываемый математическим скалярным, векторным, тензорным, спинорным полем (или некоторой совокупностью таких математических полей), подчиняющимся динамическим уравнениям (уравнениям движения, называемым в этом случае уравнениями поля или полевыми уравнениями — обычно это дифференциальные уравнения в частных производных). Другими словами, физическое поле представляется некоторой динамической физической величиной (называемой полевой переменной), определённой...
Си́льное ядерное взаимоде́йствие (цветово́е взаимоде́йствие, я́дерное взаимоде́йствие) — одно из четырёх фундаментальных взаимодействий в физике.
Подробнее: Сильное взаимодействие
Сла́бое взаимоде́йствие — фундаментальное взаимодействие, ответственное, в частности, за процессы бета-распада атомных ядер и слабые распады элементарных частиц, а также нарушения законов сохранения пространственной и комбинированной чётности в них. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики и физики высоких энергий (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого...
Квантовая информация — основной предмет изучения квантовой информатики — раздела науки на стыке квантовой механики и теории информации, включающей вопросы квантовых вычислений и квантовых алгоритмов, квантовых компьютеров и квантовой телепортации, квантовой криптографии и проблемы декогерентности.
Лоренц-ковариантность — свойство систем математических уравнений, описывающих физические законы, сохранять свой вид при применении преобразований Лоренца. Принято считать, что этим свойством должны обладать все физические законы, и экспериментальных отклонений от него не обнаружено. Однако некоторые теории пока не удаётся построить так, чтобы выполнялась лоренц-ковариантность.
При́нцип соотве́тствия в методологии науки — утверждение, что любая новая научная теория должна включать старую теорию и ее результаты как частный случай. Например, закон Бойля — Мариотта является частным случаем уравнения состояния идеального газа в приближении постоянной температуры; кислоты и основания Аррениуса являются частным случаем кислот и оснований Льюиса и т. п.
Принцип дополнительности — один из важнейших методологических и эвристических принципов науки, а также один из важнейших принципов квантовой механики, сформулированный в 1927 году Нильсом Бором. Согласно этому принципу, для полного описания квантовомеханических явлений необходимо применять два взаимоисключающих («дополнительных») набора классических понятий, совокупность которых даёт исчерпывающую информацию об этих явлениях как о целостных. Например, дополнительными в квантовой механике являются...
Поляризация вакуума — совокупность виртуальных процессов рождения и аннигиляции пар частиц в вакууме, обусловленных квантовыми флуктуациями. Эти процессы формируют нижнее (вакуумное) состояние систем взаимодействующих квантовых полей.
Принцип неопределённости Гейзенбе́рга (или Га́йзенберга) в квантовой механике — фундаментальное соображение (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих систему квантовых наблюдаемых, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного полей). Более доступно он звучит так: чем точнее измеряется одна характеристика частицы, тем менее точно можно измерить вторую...
Виртуа́льная части́ца — объект, который характеризуется почти всеми квантовыми числами, присущими одной из реальных элементарных частиц, но для которого нарушена свойственная последней связь между энергией и импульсом частицы. Понятие о виртуальных частицах возникло в квантовой теории поля. Такие частицы, родившись, не могут «улететь на бесконечность»; они обязаны либо поглотиться какой-либо частицей, либо распасться на реальные частицы. Известные в физике фундаментальные взаимодействия протекают...
Чётность — свойство физической величины сохранять свой знак (или изменять на противоположный) при некоторых дискретных преобразованиях. Она выражается числом, принимающим два значения: +1 и −1.
Термодина́мика (греч. θέρμη — «тепло», δύναμις — «сила») — раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах. В термодинамике изучаются состояния и процессы, для описания которых можно ввести понятие температуры. Термодинамика — это феноменологическая наука, опирающаяся на обобщения опытных фактов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации...
Поле Хиггса или хиггсовское поле — поле, обеспечивающее спонтанное нарушение симметрии электрослабых взаимодействий благодаря нарушению симметрии вакуума, названо по имени разработчика его теории, британского физика Питера Хиггса. Квант этого поля — хиггсовская частица (хиггсовский бозон).
Упоминания в литературе (продолжение)
Позже развитие квантовой теории показало, что Ньютон в каком-то смысле тоже был прав. Согласно идеям
квантовой механики , свет действительно состоит из отдельных частиц, получивших название фотоны и ответственных за передачу электромагнитного излучения. Но современная теория фотонов базируется на понятии квантов света – отдельных частиц, из которых состоит свет и которые обладают уникальными свойствами. Даже одна частица света – фотон – ведет себя, как волна. Эта волна определяет вероятность нахождения фотона в каждой конкретной точке пространства (рис. 5).
В 1927 г. английский физик Поль Дирак обратил внимание на то, что для описания движения открытых к тому времени микрочастиц (электрона, протона и фотона), т. к. они движутся со скоростями, близкими к скорости света, требуется применение специальной теории относительности. П. Дирак составил уравнение, которое описывало движение электрона с учетом законов и
квантовой механики , и теории относительности А. Эйнштейна. Этому уравнению удовлетворяли два решения: одно решение давало известный электрон с положительной энергией, другое – неизвестный электрон-двойник, но с отрицательной энергией. Так возникло представление о частицах и симметричных им античастицах. Это породило вопрос: пуст ли вакуум? После эйнштейновского «изгнания» эфира он казался несомненно пустым.
Но если 30–40 лет тому назад можно было говорить, что физика (и механика) поверглись в состояние анархии, то сейчас это уже не соответствует действительности. Революционная ломка основных физических принципов и представлений привела к созданию новых концепций, более глубоких и более точных, чем прежние. Причем эти концепции не просто отвергают старую классическую механику, но рассматривают ее как приближенную теорию, имеющую свои вполне определенные границы применимости. Так, например, оказалось, что в мире мельчайших известных нам объектов – молекул, атомов, электронов и т. д., классическая механика перестает быть справедливой и должна уступить место более точной, хотя в то же время более сложной и более отвлеченной теории –
квантовой механике . При этом квантовая механика не есть нечто совершенно противоречащее классической механике: она включает в себя последнюю как некоторое приближение, пригодное при рассмотрении объектов с достаточно большой массой. С другой стороны, для процессов, характеризующихся большими скоростями движения, приближающихся к скорости света, классическая механика тоже перестает быть справедливой и должна быть заменена более строгой теорией – релятивистской механикой, базирующейся на теории относительности Эйнштейна.
Построенный из абсолютизированных (воображаемых) элементов схематический образ объекта познания – это и есть его теоретическая схема. Именно она подвергается далее мысленному анализу с использованием подходящих к решаемой задаче средств мышления (математики, механики, термодинамики,
квантовой механики и т. п.). Существующих средств мышления не всегда бывает достаточно и приходится разрабатывать новые средства. Так возникли и развиваются метод конечных разностей в математике, метод конечных элементов в теории упругости и др. Посредством абсолютизации фиксируются (т. е. становятся константами) переменные величины, их число уменьшается. В результате этого теоретическая схема упрощается. Такое упрощение очень важно с точки зрения применимости научных средств мышления.
На подобный вопрос у нас пока нет ответа. И такие безответные вопросы нас встречают всюду. Можно ли было, например, предсказать свойства высокотемпературной сверхпроводимости у таких диэлектриков, как металлокерамика? Вот почему, когда я прочел последнюю книгу Пригожина, посвященную проблемам необратимости времени, мне показалась не очень оправданной его попытка редуцировать проблему «стрелы времени» к изучению тех уточнений, которые следует, может быть, внести в основное уравнение
квантовой механики . Мне кажется вполне допустимой мысль о том, что на квантово-механическом уровне нет «стрелы времени». Там царствует обратимость, и замена знака временной координаты на обратный ничего не изменяет в характере процессов, протекающих на этом уровне, а наблюдаемая потеря временной симметрии на макроуровне – это всего лишь следствие особенностей механизмов сборки.
Вопрос стоит так: когда система перестает существовать как смешение двух состояний и выбирает одно конкретное? Цель эксперимента – показать, что
квантовая механика неполна без некоторых правил, которые указывают, при каких условиях происходит коллапс волновой функции, и кот либо становится мертвым, либо остается живым, но перестает быть смешением того и другого.
Существующие детекторы уже вплотную подошли к интересной для астрофизиков области параметров. Каков же все-таки смысл в поиске гравитационных волн, для чего их можно «использовать»? Можно представить, что если бы журналисты спросили в свое время у создателей квантовой теории, какая в будущем будет польза от
квантовой механики , то вряд ли они предвосхитили открытие транзисторов и оптических квантовых генераторов-лазеров. Но прошли десятилетия и появилась прикладная квантовая электроника, квантовая оптика и квантовая радиофизика. Очень трудно предсказать конкретные приложения фундаментальной теории, но ее будущий вклад в технику и инженерную физику несомненен.
Рождение
квантовой механики и физики, которые представляют, в сущности, единую науку, было продиктовано необходимостью технического прогресса. Но рождалась она с большим трудом. Мыслимое ли дело признать, что реальность зависит от нашего сознания, и тем более является ее продуктом! И эта проблема, названная проблемой измерения, портила на первых порах всю «картину маслом» квантовым физикам. Многие годы она являлась главной причиной, мешавшей признанию квантовой физики в академических кругах. И это понятно: раз результаты измерений невозможно прогнозировать и вычислять (эксперименты то получаются, то не получаются), значит, теория не работает. Ведь, как известно, именно предсказуемость результата считалась всегда главным доказательством рабочей теории.
Скажу сразу, что я не физик и не собираюсь вникать в суть общей теории относительности или
квантовой механики . Зато я, в отличие от многих, знаю суть геометрии Евклида. При чем здесь Евклид? А вот при чем. Суть спора между академиками изложена В.Л. Гинзбургом в следующем: «Одним из крупнейших достижений математики прошлого века стало создание и развитие Лобачевским, Бойяи, Гаусом, Риманом и их последователями неевклидовой геометрии. Тогда же возник вопрос: какова на самом деле геометрия физического пространства-времени, в котором мы живем? Как сказано, согласно общей теории относительности, эта геометрия неевклидова, риманова, а не псевдоевклидова геометрия Минковского… Гипотеза о том, что физическое пространство-время обязательно в точности пространство Минковского, которую принимает А.А. Логунов в качестве основополагающей, является очень далеко идущей…»
Эти слова были сказаны в конце 20-х годов, примерно тогда же, когда создавалась и
квантовая механика , которая сегодня, с моей точки зрения, может рассматриваться как первая неклассическая теория сложности. Об этом будет сказано чуть подробнее позже. А сейчас подчеркну, что процитированные выше слова Мандельштама по поводу «ненужности строгих определений» я рассматриваю не как некий временный компромисс, но как один из принципов нового «нелинейного сложного мышления», рекурсивно сопряженный с принципами наблюдаемости, контекстуальности, контингентности, дополнительности и неопределенности. Принципами, о которых традиционно принято говорить чаще всего в связи с философскими проблемами квантовой механики. Я, однако, полагаю, что эти принципы могут (и должны) быть конструктивно связаны с тем, что сейчас называют (опять-таки, не строго) «теорией сложности» (theory of complexity). Или же, что, пожалуй, точнее (и следуя Морену) парадигмой сложности. Но этих принципов для дискурса конструктивной синергетической сложности недостаточно. Их перечень должен быть дополнен еще и такими принципами, как принцип самоорганизации и принцип эмерджентности. Имея ввиду, что процессы самоорганизации и связанные с ними феномены возникновения новых качеств потенциально присутствуют в динамике эволюции сложности.
Связь более новых и предшествующих им научных концепций многогранна. С одной стороны, более новые теории нередко включают прежние в качестве одного из элементов, например, в качестве своего частного случая (который, надо полагать, может быть не единственным); похожим образом соотносятся друг с другом
квантовая механика и механика классическая (первая включает вторую). С другой стороны, более новые теории могут в определенных условиях сводиться к прежним, ранее признанным научным сообществом. Положения и принципы новых теорий, справедливые для всего многообразия описываемых ими ситуаций (которые нельзя верно осмыслить с помощью прежних теорий), могут оказаться справедливыми и для тех ситуаций, для которых остаются релевантными положения ранее сформулированных теорий.
С одной стороны, начиная с эпохи Нового времени становление психологии как самостоятельной науки происходило и продолжает происходить под мощным влиянием физики как классического образца научного исследования: от научной логики исследовательского мышления до критериев достоверности экспериментальных результатов. В качестве иллюстрации приведу только два примера. Первый – это парадигмальный переход от классической психологии восприятия, построенной в контексте «атомарно»-ассоциативной логики классической (механистической) физики (Вундт, 1912; Сеченов, 1947; Титченер, 1914 и др.), к гештальтпсихологии восприятия, которая построена в контексте «полевых» динамических взаимодействий, привнесенных в психологию из теории относительности и
квантовой механики (Wertheimer, 1925; Koffka, 1935 и др.). Второй пример мы наблюдаем сейчас, когда физика, точнее сказать – философия физики, на современном этапе ее развития переживает парадигмальное осмысление своих методологических позиций в направлении «классическая физика – неклассическая физика – постнеклассическая физика». И вслед за этим, как отражение рефлексивного анализа парадигмального развития классической и современной физики, появляется целый ряд методологических работ по психологии, анализирующих развитие психологии в том же направлении: классическая, неклассическая и постнеклассическая парадигмы в психологических исследованиях.
Проникновение в механизмы мозга открывает широкие перспективы его использования и дает объяснение необычным проявлениям его работы. В клетках мозга существуют такие процессы, которые обеспечивают дистанционное взаимодействие между различными системами мозга. Эти процессы могут оказаться основой взаимодействия мозга с внешним миром и, в частности, с мозгом других людей. О реальности таких процессов говорят исследования, направленные на использование
квантовой механики при анализе работы мозговых клеток и их систем: в мозге человека разыгрываются квантомеханические процессы. То есть можно утверждать, что высшие психические процессы человека имеют волновой характер.
Общекультурная обусловленность стиля мышления делает особенно отчетливой роль философии в его формировании и эволюции. С одной стороны, в механизм любого знания включены, вплетены стихийно складывающиеся «философемы» (А. Койре) – универсальные духовно-мыслительные формы, совокупность общих представлений, принципов, предугаданных закономерностей. Помимо этого, поскольку философия – это рефлексия над всей культурой, именно через нее идет осмысление, обоснование и дальнейшее развитие универсалий культуры. Более того, она оказывается способной и к выработке новых категориальных моделей мира – благодаря выявлению ведущих тенденций культуры. Анализируя основания культуры и устанавливая содержательно-логические связи между ее категориями, философия превращает их в своеобразные идеальные объекты, открывая возможность для «внутреннего теоретического движения» (В.С. Степин) в поле уже не специально-научного, а философского характера проблем, с прогнозированием и формированием новых категориальных структур, еще не сложившихся и лишь предстоящих в науке. Так бывало не только в тот период, когда натурфилософские построения восполняли недостаточную разработанность теоретического аппарата естествознания (скажем, у Аристотеля или Николая Кузанского). Через пересмотр философских оснований физики, философский анализ и переосмысление фундаментальных понятий (пространства, времени, материи) шло создание теории относительности и
квантовой механики , современных космологических теорий и теорий элементарных частиц.
Чтобы до конца понять
квантовую механику и полностью определить то, что говорится о реальности… мы должны разрешить проблему квантовых измерений.
1. Школа нелинейной оптики,
квантовой механики и статистической физики Германа Хакена, с 1960 года профессора Института теоретической физики в Штутгарте. В 1973 году он объединил большую группу ученых вокруг шпрингеровской серии книг по синергетике, в рамках которой к настоящему времени увидели свет 69 томов с широким спектром теоретических, прикладных и научно-популярных работ, основанных на методологии синергетики: от физики твердого тела и лазерной техники до биофизики и проблем искусственного интеллекта.
2. Мир частиц с ненулевой массой покоя, двигающихся со скоростью ниже скорости света – прототемпоральность (время микромира) – описывается
квантовой механикой .